

Study profile:

Applied Informatics in
German

Bachelor thesis

Cloud-Vitae

Web application for creating
and sharing a Curriculum

Vitae

Author: Andrei Nicolescu
Scientific Coordinator: Lect. Univ. Dr. Vlad Monescu

Brașov, 2023

2

Introduction

Shortly describing the theme
This paper presents a comprehensive account of the developmental process involved in
creating a web application for the purpose of generating, sharing, and modifying curriculum
vitae (CV) documents. The application adopts a client-server architecture and leverages
modern technologies, namely Symfony 6.2 (a PHP framework), Doctrine, and Webpack
Encore. The application will be deployed using conventional hosting solutions.

The underlying concept of the application revolves around facilitating CV creation for users,
either from scratch or by utilizing information from pre-existing documents, without
necessitating familiarity with page layout tools like Microsoft Word, or skills in photo editing
or graphic design. Users are only required to input their raw personal data, which may also
be automatically extracted if feasible, and the application handles the rest. Users are given
the option to select their preferred design, upon which the application populates the data
accordingly. In addition to prioritizing simplicity, the application endeavors to establish
standard practices within the realm of online employment by promoting the adoption of
novel approaches. These include transitioning from traditional email-based CV sharing to
utilizing cloud storage solutions, replacing conventional paper business cards with QR codes,
and facilitating seamless API integration with recruitment company platforms. By embracing
these advancements, the application seeks to contribute to the evolution of the internet
employment landscape while enhancing efficiency and streamlining processes across various
industry platforms.

Reasoning behind this theme choice
The decision to undertake the development of this application is motivated by the need to
address prevalent challenges and limitations encountered by individuals when creating and
disseminating their curriculum vitae (CV). Traditional methodologies for CV creation often
involve intricate page layout tools and design competencies, posing difficulties for users with
restricted technical proficiency or access to resources. Furthermore, the reliance on email-
based CV transmission and physical business cards can be inefficient and burdensome within
the context of today's digital landscape.

The primary objective of constructing this application is to offer users a friendly and accessible
solution that empowers them to effortlessly produce professional CVs. Through automated
layout and design processes, the application streamlines the CV creation procedure, enabling
users to concentrate solely on inputting their personal details. This approach simplifies CV
development, eradicating the necessity for specialized software or design expertise.
Moreover, the integration of contemporary technologies, including Symfony 6.2, Doctrine,
and Webpack Encore, establishes a sturdy and scalable framework for the application. By
leveraging cloud storage for CVs, embracing QR code business cards, and providing API
integration with recruitment platforms, the application incorporates progressive features
aligned with emerging trends in the internet employment domain.

In summary, the rationale behind developing this application derives from the aspiration to
revolutionize CV creation and dissemination practices, furnishing users with a simplified and
efficient tool while embracing contemporary advancements in the field of internet
employment.

3

Document structure
Introduction .. 2

Shortly describing the theme ... 2

Reasoning behind this theme choice .. 2

Document structure .. 3

1. Addressing the topic .. 7

1.1 The Purpose of this Thesis .. 7

1.2 Alternative approaches in this field .. 8

1.3 Designing a web application ... 10

1.3.1 The specifications of a web application ... 10

1.3.2 The design of Cloud-Vitae ... 10

1.3.2.1 Identifying the Target Audience .. 10

1.3.2.2 Determining the Base Functionalities ... 11

1.3.2.3 Selecting the Appropriate Application Type .. 12

1.3.2.4 Establishing the overall Look and Design .. 12

1.3.3 Project planning .. 12

1.3.3.1 Agile methodologies ... 12

1.3.3.2 Client communication .. 13

2. Technology and Development Stack .. 14

2.1 PHP as a Programming Language ... 15

2.2 Symfony Framework and it’s Components ... 15

2.2.1 Dependency management with Composer .. 16

2.2.2 Doctrine and Object Relational Mapping ... 17

2.2.3 Asset Management and Webpack Encore.. 17

2.2.4 HTML and Twig Render Engine .. 18

2.2.5 Symfony’s CLI .. 19

2.3 PHP Storm as an Integrated Development Environment... 20

2.4 Running a Web Server with NGINX ... 21

2.5 Application Management with Docker ... 21

2.6 Database management with MySQL .. 23

2.7 CSS and Styling Components .. 23

2.8 JavaScript and Asynchronous Server Communication with AXIOS ... 24

2.9 Software Versioning with GitHub ... 25

3. Architectural Patterns, OOP and Entity Management .. 26

3.1 Symfony 6 Framework Architecture ... 26

4

3.2 Model View Controller Architecture ... 27

3.2.1 The Model component .. 27

3.2.2 The View component .. 29

3.2.3 The Controller component .. 29

3.3 Object Oriented Programming ... 31

3.3.1 Object Oriented Programming in PHP ... 32

3.3.2 Object Oriented Programming in Symfony and MVC architectures 33

3.4 Entity Management ... 34

3.4.1 Entity Relationship Diagrams ... 34

3.4.2 Cloud-Vitae's ERD and Entity Schema .. 35

4. Application Security ... 36

4.1 Authentication ... 37

4.1.1 Email Registration and Authentication .. 37

4.1.2 LinkedIn Registration and Authentication .. 37

4.1.2.1 Application Programming Interface .. 37

4.1.2.2 LinkedIn’s API ... 38

4.1.2.3 Cloud-Vitae's API Implementation .. 39

4.2 Authorization ... 39

4.2.1 The User Role System .. 39

4.2.1 The Email Verification System ... 40

4.3 Data Encryption ... 41

4.3.1 Password Hashing and Verification .. 41

4.4 Input Validation ... 42

4.4.1 Raw Data Validation .. 42

4.4.2 CSRF Tokens .. 42

4.5 Secure Communication .. 43

4.6 Session Management ... 44

4.7 Security Testing ... 45

4.8 Error Handling and Logging .. 46

4.9 Secure Configuration ... 47

4.10 User Education... 47

4.10.1 Guiding the user .. 48

4.10.2 Mandatory Notices.. 48

4.10.2.1 Terms and Conditions of Usage .. 48

4.10.2.2 Privacy and Cookie Policies ... 49

5

4.10.2.3 Data Protection and GDPR Compliance ... 49

5. Running Cloud-Vitae on a Local Environment ... 49

5.1 Creating the Local Environment ... 50

5.1.1 Setting up Ubuntu Linux .. 50

5.1.1.1 Ubuntu Linux with a Virtual Machine .. 50

5.1.1.2 Ubuntu Linux as a Default OS ... 50

5.1.2 Setting up Docker and Docker Compose Plugin ... 51

5.1.3 Setting up GIT ... 51

5.1.4 Setting up PHP Storm .. 52

5.2 Cloning the Repository ... 52

5.2.1 Cloning from VCS in PHP Storm ... 52

5.2.2 Validating the project files ... 52

5.3 Setting up the project .. 52

5.3.1 Building the Docker containers .. 52

5.3.2 Running the Docker containers ... 52

5.3.3 Starting a Docker service in PHP Storm .. 52

5.3.4 Installing NPM and Watch on the service .. 53

5.3.5 Installing Composer Dependencies .. 53

5.3.6 Running the database migrations .. 53

5.4 Getting started .. 53

6. Application Guide .. 53

6.1 Landing Page.. 53

6.2 Legal Notices ... 54

6.3 Authentication and Registration... 55

6.3.1 Registering with LinkedIn .. 55

6.3.2 Authentication with LinkedIn .. 56

6.3.3 Registering with Email Address.. 57

6.3.4 Authenticating with Email Address .. 57

6.4 Verifying the Email Address ... 58

6.5 Creation Page .. 59

6.6 CV Page ... 61

6.6.1 Changing the Styling .. 61

6.6.2 Downloading a PDF Copy .. 62

6.6.3 Sharing a Cloud Hosting Link ... 62

6.6.4 Sharing a QR Code Link.. 62

6

6.6.5 Changing User Information ... 62

6.6.6 Changing the Profile Picture .. 63

6.6.7 Logging out ... 63

7. Development directions and Conclusion .. 63

Bibliography and Webography... 65

7

1. Addressing the topic
The application addresses the complexities and limitations associated with creating, sharing,
and editing curriculum vitae (CV) documents. It achieves this by providing a user-friendly
interface that automates layout and design, eliminating the need for specialized software or
design skills. By simplifying the CV creation process, the application aims to alleviate the
challenges faced by individuals with limited technical knowledge or resources.

Moreover, the application embraces modern practices in the internet employment domain,
offering solutions to existing problems. It facilitates the transition from conventional email-
based CV sending to cloud storage, resolving inefficiencies and obstacles related to file
management and sharing. Additionally, the adoption of QR code business cards tackles the
shortcomings of traditional paper business cards, enabling easy access to comprehensive CV
information in today's digital era.

Furthermore, the application recognizes the need for seamless integration with recruitment
company platforms. Through API integration, it bridges the gap between job seekers and
recruiters, streamlining interactions and enhancing the efficiency of the recruitment process.

In summary, the application tackles the complexities of CV creation, sharing, and editing,
while simultaneously addressing problems in the internet employment landscape. It simplifies
the process for users, revolutionizes CV distribution methods, replaces outdated business
card practices, and facilitates seamless API integration with recruitment platforms.

1.1 The Purpose of this Thesis
The primary objective of this application is to streamline the multifaceted process of creating,
sharing, and editing curriculum vitae (CV) documents. Its core purpose is to simplify these
tasks by providing a user-friendly interface that automates layout and design, thereby
alleviating the complexities associated with CV creation. In addition to simplification, the
application also aims to drive the adoption of contemporary practices in the realm of internet
employment.

One such practice is the transition to cloud storage for CVs, which offers numerous
advantages over traditional methods of CV sharing and storage. By enabling users to store
and access their CVs through cloud-based repositories, the application eliminates the
limitations and inefficiencies associated with email-based CV sending and physical storage
mediums. This modern approach enhances accessibility, version control, and collaboration
among users.

Furthermore, the application introduces the use of QR code business cards as an innovative
and efficient method for CV sharing. By integrating CV information into QR codes, users can
effortlessly share their comprehensive profiles with others, eliminating the need for
traditional paper business cards and enhancing digital networking capabilities.

Additionally, the application facilitates seamless integration with recruitment platforms
through the provision of an application programming interface (API). This integration enables
smooth data exchange, streamlined communication, and enhanced efficiency between job
seekers and recruitment companies. By embracing API integration, the application promotes
interoperability and integration with various recruitment platforms, enhancing the overall
user experience.

8

By adopting these practices, the application endeavors to streamline CV sharing procedures,
amplify visibility for job seekers, and facilitate seamless interactions with recruitment entities.

In summary, the overarching goal of this application is to simplify the processes of creating,
sharing, and editing CVs, while concurrently promoting contemporary practices in the
internet employment domain. By offering a user-friendly interface, transitioning to cloud
storage, adopting QR code business cards, and facilitating API integration with recruitment
platforms, the application aims to enhance the efficiency, accessibility, and effectiveness of
CV-related activities in the modern employment landscape.

1.2 Alternative approaches in this field
The concept of web-based solutions for curriculum vitae (CV) management is not new, as
there already exist numerous solutions that address specific challenges. However, no
comprehensive all-in-one web solution has emerged that encompasses all the stated
functionalities. Examples of such existing solutions include online CV builders, cloud-based CV
management systems, and CV parsing tools.

Online CV builders have gained popularity due to their user-friendly interfaces and diverse
template options, streamlining the CV creation process. These platforms (i.e. Zety, LiveCareer
and MyPerfectResume) offer intuitive data entry features, allowing users to input information
effortlessly. With customizable layout choices, fonts, and styles, users can tailor their CVs to
their preferences. This solution proves beneficial for individuals lacking design skills or seeking
a quick and efficient method to generate professional-looking CVs.

Fig. 1 – Example of online CV builder (Zety)

Cloud-based CV management systems (i.e. BambooHR, Greenhouse and Submittable) provide
a centralized platform for storing, managing, and updating CVs. Users can securely access
their CVs from any device with an internet connection. Collaboration features enable CV

9

sharing with employers or recruiters for review and feedback. Cloud storage ensures data
integrity and availability, mitigating the risk of CV loss due to hardware failures or accidents.
Additionally, these systems typically offer version control capabilities, enabling users to track
changes and revert to previous versions when necessary.

Fig. 2 – Example of cloud-based CV management systems (BambooHR)

CV parsing tools (i.e. Sovren Resume Parser, Rchilli and HireAbility) employ advanced
algorithms and natural language processing techniques to extract pertinent information from
existing CVs, transforming it into a structured format. These tools automate the data entry
process, ensuring accurate extraction of crucial details such as work experience, education,
and skills. By eliminating manual entry, CV parsing tools save time and reduce the likelihood
of errors. HR professionals and recruiters handling large volumes of CVs can particularly
benefit from this solution's ability to streamline processing tasks.

Fig. 3 – Example of how CV parsing tools extract data

10

However, despite the existence of these individual solutions, an encompassing all-in-one web
solution that integrates the aforementioned functionalities is yet to materialize. The
development of such a comprehensive solution remains a promising avenue in the field of CV
management and would provide users with a holistic and streamlined approach to address
the multifaceted challenges associated with CV creation, storage, and sharing.

1.3 Designing a web application
The initial phase of developing a web application entails establishing its functionality and
creating preliminary documentation. In this process, it is crucial to define the criteria for
developing the Minimum Viable Product (MVP). The concept of the MVP, as popularized by
Eric Ries in his book "The Lean Startup" [1] aims to validate the effectiveness of a solution in
a real production environment. Accordingly, the Cloud-Vitae application can be considered
an MVP as it represents a fully functional prototype that effectively addresses the
aforementioned problems with minimal effort.

1.3.1 The specifications of a web application
Following the development of a web solution, it is essential to provide accompanying
instructions for its usage. However, the process of writing detailed specifications can be time-
consuming. In accordance with Agile principles, as described in chapter 1.3.2.1, the emphasis
is placed on delivering an intuitive and functional product rather than dense documentation.
Thus, prioritizing the development of an efficient and user-friendly solution aligns with the
Agile approach, recognizing the value of practical implementation over extensive written
documentation.

The creation of a Minimum Viable Product (MVP) typically involves a systematic approach
encompassing several proven steps. These steps include conducting a thorough market
analysis, gaining a comprehensive understanding of the end users, defining the desired final
product, and determining the essential functionalities to be incorporated. This sequential
process has demonstrated its effectiveness in guiding the development of an MVP, ensuring
that the resulting product aligns with market demands, addresses user needs, and
encompasses the required core features.

1.3.2 The design of Cloud-Vitae

During the design phase of developing this application, meticulous attention was given to
several sequential levels, each playing a crucial role in the overall process. These levels,
presented in a systematic order, are as follows:

- Identifying the target audience
- Determining the base functionalities
- Selecting the appropriate application type

- Establishing the overall look and design

1.3.2.1 Identifying the Target Audience
The intended target audience of this application primarily comprises of individuals seeking a
streamlined and effective solution to facilitate the creation, sharing, and modification of
curriculum vitae (CV) documents. This encompasses a diverse range of users, including job
seekers, professionals, students, and individuals in need of well-crafted and professional CVs.
The application strives to accommodate users with varying degrees of technical proficiency

11

and design expertise by providing an intuitive interface and automated layout functionalities.
Moreover, the application's integration with recruitment platforms and incorporation of
contemporary practices within the internet employment sphere render it pertinent to human
resources (HR) professionals, recruiters, and organizations involved in the employment
process.

1.3.2.2 Determining the Base Functionalities
Given the extensive potential user base of Cloud-Vitae, it becomes impractical to address
specific individual needs, necessitating the development of a highly scalable, modular, and
user-friendly web solution by default. Consequently, the application must encompass, at a
minimum, the fundamental functionalities already prevalent in the market. Thus, the base
functionalities of Cloud-Vitae are as follows:

- CV Creation

- CV Customization

- CV Sharing

- Cloud Storage Integration

- API Integration with Recruitment Platforms
- User management

The application affords users with a convenient means to effortlessly generate professional
curriculum vitae (CVs). Through an intuitive user interface, individuals can input personal
details encompassing work experience, education, skills, and contact information. The
application automates the intricate process of designing and arranging CV elements,
eliminating the necessity for specialized software or design expertise. Users are empowered
to tailor the visual presentation and structure of their CVs according to their preferences,
selecting from an array of templates, fonts, colors, and styles that facilitate personal branding.

Streamlining the dissemination of CVs, the application provides facile options for sharing with
prospective employers, recruiters, or relevant stakeholders, encompassing email
transmission, cloud-based storage, or the creation of QR code business cards. By simplifying
CV distribution, the application heightens visibility for job seekers. Furthermore, users benefit
from the secure storage of their CVs within the cloud, ensuring accessibility from any internet-
connected device while mitigating the risks associated with hardware failures or inadvertent
data loss. The cloud storage functionality also facilitates seamless updates and version control
for CVs.

To expedite the application process and enhance the interaction between job seekers and
hiring organizations, the application integrates with recruitment platforms through its
application programming interface (API), facilitating the efficient exchange of data. Such
integration optimizes the overall job-seeking process and streamlines communication
channels. Moreover, the application incorporates user management features, enabling
individuals to create accounts, manage profiles, and easily switch between multiple versions
of their CVs. This empowers users to easily update their information and track their CV
history. In summation, the application strives to simplify the intricacies of CV creation,
customization, sharing, and storage, while incorporating contemporary practices and
technologies that amplify the user experience and elevate efficiency in the pursuit of
employment opportunities.

12

1.3.2.3 Selecting the Appropriate Application Type
Cloud-Vitae can be classified as a dynamic web application, which exhibits a higher degree of
technical complexity compared to other types of web applications. Dynamic web applications
utilize databases to load and update data dynamically, ensuring that the content is refreshed
each time a user interacts with the application. In the case of Cloud-Vitae, it incorporates
characteristics akin to a single-page application (SPA). However, instead of altering the loaded
page data, the application's backend responds with a different render on the same page
whenever a request is made. This approach enables seamless user experience while still being
able to utilize full page reloads which efficiently deliver updated content.

1.3.2.4 Establishing the overall Look and Design
The establishment of the overall look and design of the application involved a systematic and
detailed approach to create a visually appealing and user-friendly interface. Significant
consideration was given to the selection of color palettes, typography, and visual elements
that were in harmony with the application's intended objectives and intended user base. The
design elements underwent careful refinement to optimize readability, usability, and the
overall user experience. Furthermore, the arrangement of the interface components and the
navigation system were strategically devised to facilitate intuitive interaction and seamless
access to the application's diverse functionalities. By employing a meticulous design process,
the application achieves a visually coherent and attractive interface that effectively engages
users, while reflecting a contemporary and professional aesthetic.

1.3.3 Project planning
Thorough planning is an essential aspect of developing a web application, even in cases where
the project is undertaken by a single individual. Throughout the years, various software
development methodologies (SDM) have been employed, but the consensus has emerged
that an iterative and incremental approach is most effective. Notably, Agile methodologies
have gained widespread adoption in application development. Originating in Utah, USA, in
2001, Agile methodologies were initially conceived by a group of 17 prominent programmers
of that era, including figures such as Martin Fowler and Robert Martin. [2] These practitioners
endorsed the "Manifesto for Agile Software Development", [3] which ushered in a paradigm
shift in the design and creation of applications, permanently transforming industry practices.

1.3.3.1 Agile methodologies
Agile methodologies encompass a collection of approaches that enable a flexible and adaptive
view to software development, as implied by their name. These methodologies emphasize
goal-oriented project management characterized by continuous iterations, encompassing
both development and testing phases, commonly referred to as sprints. Agile methodologies
are widely recognized as the most straightforward and efficient means of translating a vision
into a software solution. They entail ongoing planning and improvement, fostering a learning
mindset, fostering collaborative teamwork, fostering exponential growth in development,
and facilitating timely software delivery. Several prominent approaches are commonly
employed within Agile development, including iterative and incremental development,
maintaining regular and direct communication with clients, segmenting projects into design-
oriented individual models, concurrent error handling, employing short iteration time frames
typically lasting between 2 to 4 weeks, and incorporating regression testing, in which testing

13

occurs after each iteration to identify and rectify any issues.
1.3.3.2 User stories in Agile development

In Agile development, user stories play an essential role in capturing and communicating the
requirements of end users. These stories are concise and user-centric descriptions that
outline specific features or functionalities, encompassing the needs, goals, and expectations
of the users. They are written in normal languages (no code is required), in a way that is easy
to understand and that best describes the user’s role in the application. They are framed from
the perspective of distinct user roles, delineating the "who," "what," and "why" of each
requirement. [2]

Within the context of Cloud-Vitae, user stories are employed to identify and articulate the
specific needs of the target audience, namely job seekers, professionals, and students. An
illustrative user story example would be: "As a job seeker, I aspire to effortlessly input my
work experience and educational details during the CV creation process, facilitating the
presentation of a comprehensive overview of my qualifications to prospective employers."
User stories serve as a foundation for prioritizing features, planning iterations, and ensuring
the effective fulfillment of user requirements. While Cloud-Vitae is developed by a single
individual without external stakeholders, user stories still provide valuable insights into the
desired appearance of the final product and inform the shaping of the application to optimize
user experience.

1.3.3.2 Client communication
As stated earlier, the absence of external stakeholders and the presence of a sole developer
in the case of this application deviate from the typical Agile methodology, which emphasizes
continuous communication and feedback from clients. To overcome this, a modified
approach was adopted while developing Cloud-Vitae, wherein the end user itself is
considered the client. In order to validate the information gathered through user stories and
ensure alignment with user needs, a select group of potential users, closely aligned with the
application's objectives, was identified. Throughout the various development phases, these
users actively participated in the process. They were engaged in activities such as completing
quizzes and forms to gain insights into their preferences and requirements. Additionally,
during each sprint, they played a crucial role in the testing phase, providing direct feedback
on the newly implemented features. This active involvement of the selected user group was
a fundamental step in the realization of the overarching goal of Cloud-Vitae.

14

As we can see by the submitted answers, over 80% of users were required to send their CVs

as an electronic copy online.

However, none of the users reported sharing their CVs as a link to a cloud storage solution.

This is just one of the many areas of opportunity that Cloud-Vitae aims to revolutionize.

Compared to other industries, the employment world falls behind from a technological

standpoint, and considering the advancements made in the last century, even the users are

able to identify this problem, as we can understand from the graph bellow.

2. Technology and Development Stack
In programming, a development stack refers to a combination of software tools, frameworks,
libraries, and technologies that are used together to develop and deploy applications. It is a
set of tools that work synergistically to provide a complete development environment and
support the entire software development lifecycle, and it is crucial to select them before
entering the development stage.

15

2.1 PHP as a Programming Language
A programming language serves as a formal means of communication between humans and
computers, enabling the transmission of instructions that can be understood and executed
by the computer. It encompasses a defined set of rules and syntax that empowers
programmers to express their algorithms and logic in a structured manner. Programming
languages are extensively employed in the development of software applications, websites,
and other computer programs, facilitating the creation of complex systems by providing a
medium through which programmers can articulate their instructions effectively. [4] Each
programming language possesses its own distinctive syntax and semantics, dictating how
code is written and subsequently interpreted by the computer. In the context of Cloud-Vitae,
the PHP (Personal Home Page / Hypertext Preprocessor) programming language has been
utilized.

PHP has emerged as a prominent server-side scripting language extensively utilized in web
development. Originally conceived by Rasmus Lerdorf in 1994, PHP has undergone significant
advancements and has garnered widespread adoption as a programming language for
constructing dynamic websites and web applications. PHP is designed to seamlessly integrate
within HTML code, facilitating the combination of PHP and HTML to generate dynamic web
pages. Its execution occurs on the server side, wherein the PHP code is processed on the web
server before transmitting the resulting HTML to the client's web browser. This capability
empowers PHP to dynamically generate content, interact with databases, handle form
submissions, and perform diverse server-side operations.

One of the notable advantages of PHP lies in its user-friendly nature and accessibility. It
features a straightforward syntax akin to that of programming languages like C, rendering it
relatively easy for beginners to grasp. Additionally, PHP benefits from a vibrant and active
community of developers, ensuring a plethora of resources, libraries, and frameworks
available to support PHP development. The language provides extensive support for a range
of databases, including MySQL, PostgreSQL, and Oracle, thereby making it suitable for
constructing database-driven web applications. Furthermore, PHP boasts robust support for
web protocols and seamless integration with external application programming interfaces
(APIs), thereby exhibiting versatility in terms of interoperability with other systems and
services.

Overall, PHP stands as a potent and widely adopted programming language for web
development, bestowing developers with flexibility, scalability, and a comprehensive array of
features to create dynamic and interactive websites and web applications.

2.2 Symfony Framework and it’s Components
In software development, a framework is a pre-established collection of tools, libraries, and
guidelines that offers a structured and standardized approach to application development. It
provides developers with a foundation and reusable components that facilitate the coding
process by handling common tasks and offering a framework for organizing code. Typical
features found in frameworks include database access, session management, input
validation, and routing, among others, which contribute to improved development efficiency
and productivity. [5]

16

One popular framework used in web application development is Symfony Framework. It is an
open-source PHP framework that follows the Model-View-Controller (MVC) architectural
pattern (chapter 3.2). Symfony Framework offers a flexible and robust foundation for building
complex web applications, promoting code reusability, modular design, and maintainability.

Symfony Framework encompasses a wide range of features and components, including a
comprehensive set of libraries, tools, and utilities. It provides a powerful routing system for
mapping URLs to controllers, a render engine for creating dynamic views (chapter 2.2.4), and
an object-relational mapping (ORM) layer for database interaction (chapter 2.2.2).
Additionally, Symfony supports internationalization and localization, security mechanisms
such as authentication and authorization (chapters 4.1 and 4.2), and a command-line
interface (CLI) for automating tasks (chapter 2.2.5).

One of the notable strengths of Symfony lies in its focus on best practices and adherence to
industry standards. It encourages the use of design patterns, coding conventions, and testing
methodologies, which contribute to the development of maintainable and scalable
applications. Symfony also promotes modular development through the use of bundles,
enabling developers to easily add or remove functionality as needed.

In summary, Symfony Framework serves as a comprehensive and mature toolkit for PHP web
development, empowering developers to create robust, scalable, and high-performance
applications with efficiency and consistency. It simplifies the development process by
providing a solid foundation and a wide range of features, ultimately saving time and effort
while ensuring the quality of the codebase.

2.2.1 Dependency management with Composer
In PHP, dependencies are external resources such as libraries, modules, or packages that a
PHP application relies on to achieve proper functionality. These dependencies offer additional
features, reusable components, or specialized functionalities that enhance the capabilities of
the application. The range of dependencies in PHP varies from versatile libraries that handle
common tasks like database interactions, file manipulation, and HTTP requests to more
specific libraries tailored for web development, image processing, authentication, and other
specific purposes. When a PHP application depends on external resources, it is essential to
ensure that these dependencies are correctly installed and accessible. This involves
effectively managing the versions and compatibility of the dependencies, resolving any
conflicts that may arise when using different libraries, and guaranteeing that all necessary
components are available for the application to operate accurately. Proper management of
dependencies ensures that the application can effectively leverage external resources and
function as intended.

Composer is a valuable dependency management tool designed specifically for PHP projects.
It serves the purpose of simplifying the management of external libraries and packages
required by a PHP application. Developers can utilize Composer to specify the necessary
dependencies for their project, including both Symfony components and bundles, as well as
other external libraries. This is accomplished through the creation of a “composer.json” file,
where developers define the specific versions or version ranges of the dependencies. By
leveraging this file, Composer effectively resolves and downloads the required libraries from
Packagist, a comprehensive online package repository. [6]

17

Composer not only ensures the retrieval of the specified dependencies but also handles their
respective dependencies, thus guaranteeing a consistent and compatible set of libraries for
the Symfony application. Moreover, Composer provides developers with a command-line
interface to execute various dependency management tasks, such as installation, updating,
and removal of packages (chapter 5.3.5). Additionally, Composer generates an optimized
autoloader, enabling efficient loading of the necessary classes from the installed packages. By
incorporating Composer into the development process, Symfony Framework streamlines the
management of dependencies, enabling developers to seamlessly integrate and leverage
third-party libraries and components within their Symfony applications. Composer
contributes to promoting modularity and facilitating code reuse, ultimately enhancing the
overall efficiency and maintainability of Symfony projects.

2.2.2 Doctrine and Object Relational Mapping
Doctrine is an ORM (Object Relational Mapping) library that is widely used in Symfony and
other PHP frameworks. It is an essential component of Symfony for several reasons. Firstly,
Doctrine simplifies the complexity of database interactions by mapping database tables to
PHP objects, making database operations more straightforward and improving the
maintainability of the code. It provides an ORM system that automates SQL query generation,
optimizes querying, caching, and handles relationships between entities. [7]

Doctrine includes a flexible query language called Doctrine Query Language (DQL), which
enables developers to write complex database queries using object-oriented syntax. This
facilitates expressing entity relationships and performing advanced database operations.
Additionally, Doctrine provides tools for managing database schemas, such as generating
database tables based on entity definitions, handling database migrations, and ensuring
schema consistency.

In the Symfony framework, Doctrine seamlessly integrates with the core components.
Symfony offers native support for Doctrine, making it easy to configure and use in Symfony
applications. Doctrine works in harmony with Symfony's dependency injection container and
configuration system. Symfony components, including the Form component, integrate
smoothly with Doctrine, simplifying the creation and handling of forms based on entity
definitions.

Doctrine benefits from an active and supportive community of developers who contribute to
its development and provide extensive documentation, tutorials, and resources. It also
integrates well with other popular libraries and tools, expanding its capabilities and enhancing
the development experience. Overall, Doctrine plays a critical role in Symfony by simplifying
database interactions, improving code maintainability, and offering powerful ORM
capabilities.

2.2.3 Asset Management and Webpack Encore
Webpack Encore is a library specifically used in Symfony to handle and compile frontend
assets such as JavaScript, CSS, and images. It greatly simplifies the process of bundling and
optimizing these assets for deployment in a production environment. Webpack Encore is built
on top of Webpack, a well-known module bundler for JavaScript applications. In Symfony,
Webpack Encore plays a crucial role in managing and integrating frontend assets within the
application. It offers a user-friendly API that allows developers to define entry points for their

18

assets, specify dependencies, and configure loaders and plugins to process and transform the
assets as needed. [8]

One of the key benefits of using Webpack Encore is that it enables developers to effectively
organize and modularize their frontend code. It fully supports modern JavaScript frameworks
like React, Vue.js, and Angular, empowering developers to leverage component-based coding
and take advantage of advanced frontend development techniques. When it comes to
integration with Symfony, Webpack Encore seamlessly fits into the framework's asset
management system. This allows developers to easily reference and include their compiled
assets in Twig templates or other parts of the application. Webpack Encore automatically
generates the appropriate HTML tags for incorporating the compiled assets, ensuring cache-
busting and guaranteeing that the latest versions are loaded.

Furthermore, Webpack Encore provides a development server that includes a hot module
replacement (HMR) feature. This functionality allows developers to witness immediate
changes in the browser without manually refreshing the page. The inclusion of HMR
significantly speeds up the development process and enhances the overall experience for
developers.

2.2.4 HTML and Twig Render Engine
HTML, or Hypertext Markup Language, is a standard markup language used to structure and
present web pages. It defines tags and elements that represent various components of a
webpage, including headings, paragraphs, images, links, forms, and more. HTML allows
developers to organize content and define its layout, enabling web browsers to interpret and
display the page correctly. In Symfony, Twig is the templating and rendering engine used to
dynamically generate HTML. Twig is a robust and secure templating language designed to
simplify the process of rendering views in Symfony applications. [9]

Twig acts as an intermediary between PHP code and the HTML output. It enables developers
to create templates that combine HTML structure with dynamic content. These templates
contain both HTML code and Twig-specific syntax and expressions. Using Twig, developers
can access and display data from PHP variables, perform logical operations, iterate over data
sets, apply filters to modify content, and more. The Symfony framework employs Twig to
separate the presentation layer (HTML) from the business logic (PHP), adhering to the Model-
View-Controller (MVC) architectural pattern. In this pattern, the view is responsible for
presenting data to users. Twig empowers developers to build reusable and modular templates
that are easy to maintain and customize.

Symfony integrates Twig as its default templating engine, providing seamless integration and
advanced features. This integration encompasses features such as template inheritance,
layout management, and internationalization support. Twig templates in Symfony can extend
a base template while overriding specific blocks to tailor the content. This fosters code reuse
and consistency throughout the application. By utilizing Twig, Symfony enhances security by
automatically escaping user-generated content. This precautionary measure mitigates
common security vulnerabilities, including cross-site scripting (XSS) attacks, by ensuring that
user input undergoes proper sanitization before being displayed in the HTML output.

In summary, Twig simplifies the process of generating HTML output in Cloud-Vitae by
separating the presentation layer from the underlying PHP code. It offers a flexible and secure

19

templating language that promotes code reusability, modularity, and consistent design. With
Twig, developers can easily create dynamic and interactive views while maintaining a clear
separation of concerns between the application logic and the HTML representation.

2.2.5 Symfony’s CLI
A CLI, also known as a Command Line Interface, is a user interface that relies on text-based
commands to interact with a computer program or operating system. Instead of using
graphical elements, a CLI allows users to enter commands through a command prompt or
terminal window.

In a CLI, users input text commands, which are then interpreted by the underlying software
or operating system. These commands can trigger specific actions, retrieve information,
modify settings, and perform a wide range of tasks. CLI interfaces are commonly utilized in
operating systems, programming languages, and software applications that require advanced
or specialized interactions. They are particularly favored by developers, system
administrators, and power users due to their efficiency, flexibility, and the ability to automate
tasks through scripting. By using a CLI, users can navigate directories, execute programs,
manage files, configure system settings, install packages, and perform various other
operations by typing specific commands and providing any necessary arguments. CLI
commands typically follow a specific syntax and may include predefined options and
parameters.

Although CLI interfaces may initially seem less intuitive for beginners compared to graphical
interfaces, they offer several advantages. These include greater control over system
operations, the ability to automate tasks through scripting, increased flexibility, and the
capability to work in resource-constrained environments or remote systems using SSH
(Secure Shell). Symfony's CLI is an essential tool within the Symfony framework that
empowers developers to interact with their Symfony applications through the command line.
It offers a user-friendly approach to executing diverse commands related to application
development, configuration, testing, and more.

The Symfony CLI builds upon the robust Symfony Console component, which furnishes the
necessary infrastructure for creating and executing command-line commands. Each Symfony
CLI command is implemented as a PHP class that extends the base Command class inherited
from the Symfony Console component.

To utilize the Symfony CLI, developers typically open a terminal or command prompt, navigate
to the root directory of their Symfony project, and execute desired commands by inputting
"php bin/console" followed by the command name, along with any required arguments or
options. Symfony CLI commands encompass a broad spectrum of functionalities, including:

- Symfony CLI furnishes commands for generating code skeletons, creating CRUD
operations for entities, managing database migrations, and launching a local
development server.

- Developers can employ Symfony CLI commands to handle project dependencies, such
as installing and updating Composer packages.

- Symfony CLI provides commands for executing tests, performing code quality checks
with linters, generating code coverage reports, and more.

20

- Symfony CLI commands facilitate the examination and modification of various
configuration settings within a Symfony application, encompassing environment
variables, routing configurations, caching mechanisms, and others.

- Symfony CLI offers commands to aid in debugging and profiling applications. This
includes examining request/response information, executing console commands in
the context of a specific request, and other debugging features.

Symfony CLI commands are often accompanied by additional options and arguments that
allow developers to customize their behavior. For comprehensive details about each
command and its available options, developers can execute "php bin/console
command_name --help". By harnessing the capabilities of the Symfony CLI, Cloud-Vitae was
able to effectively manage and streamline diverse development tasks, automate repetitive
actions, and interact with the Symfony application through a command-line interface. This
invaluable tool enhances productivity and provides developers with a consistent and potent
set of resources for Symfony application development. To demonstrate how easy to use
Symfony’s CLI is, let’s take the example of creating a User Entity. Using this tool, we can
complete this task without writing a single line of code. In the CLI, we will run the following
commands:

This command will create the User Entity based on our specified preferences. Let’s say we
want to have an authentication and registration system for our users. We will have to just run
the following commands:

Now that we are done with creating the necessary PHP files and logic, we still have to
implement the same logic on our database layer. But instead of analyzing the generated code
and trying to replicate the same logic ourselves, thanks to the auto-generated Doctrine ORM
annotations in the User Entity (chapter 2.2.2), the Symfony CLI knows how to do that as well.
We just have to use these commands:

The first command will generate a migration file (a PHP file containing database queries) that
implements the Entity logic into the database client (the migrations are located under
app/migrations, and they are named after the timestamp of the moment they were created).
The second command executes all the migrations generated by the first one. However, these
commands just create the basic logical structure of our application. In order to develop the
application further, there still is a lot of code implementation left to do.

2.3 PHP Storm as an Integrated Development Environment
An Integrated Development Environment (IDE) is a software application that offers a
comprehensive set of tools and features to assist in software development tasks. It serves as
a centralized platform where programmers can write, modify, debug, and test their code. IDEs
typically include a code editor with functionalities like syntax highlighting, code completion,

21

and code navigation. They also provide debugging tools, automation for building software,
and integration with version control systems.

PHP Storm is a widely used IDE specifically designed for PHP development. Developed by
JetBrains, it offers a diverse range of features and capabilities that aim to enhance
productivity and streamline the PHP development process. PHP Storm presents an intuitive
and user-friendly interface, incorporating advanced coding assistance, intelligent code
completion, and real-time error detection. It caters to various web technologies and
frameworks commonly employed in PHP development, such as Symfony, Laravel, and
WordPress, providing specific features tailored to these frameworks. [10]

One of PHP Storm's notable strengths lies in its robust debugging capabilities, empowering
developers to set breakpoints, step through code execution, and inspect variables to
efficiently identify and resolve issues. It seamlessly integrates with version control systems
like GIT, enabling smooth collaboration among developers and facilitating effective codebase
management. Moreover, PHP Storm encompasses tools for database management, code
refactoring, testing, and deployment, making it a comprehensive solution for PHP
development needs.

Furthermore, PHP Storm supports customization and extensibility, allowing developers to
personalize their development environment according to their preferences and workflow. It
offers a broad range of plugins and extensions that expand its functionality and introduce
additional features.

2.4 Running a Web Server with NGINX
NGINX (abbreviation from “engine-x”) is a popular web server software that Symfony
applications use to enhance their performance, scalability, and security. Acting as a reverse
proxy and load balancer, NGINX efficiently manages HTTP requests and directs them to the
appropriate Symfony endpoints. It also serves static files directly, reducing the processing
load on Symfony. NGINX supports caching of static content and dynamic responses, leading
to improved response times.

Additionally, it handles SSL/TLS encryption and decryption, offloading the computational
burden from Symfony. NGINX's load balancing capabilities allow it to distribute requests
among multiple backend servers running Symfony, increasing application availability. It acts
as a reverse proxy, adding an extra layer of security by forwarding requests to backend
Symfony servers. By incorporating NGINX, Symfony applications benefit from optimized
request handling, increased scalability, and enhanced security.

2.5 Application Management with Docker
Docker is an open-source platform that enables developers to automate the deployment and
management of applications using software containers. Containers are lightweight and self-
contained environments that include all the necessary dependencies and configurations to
run an application. By packaging an application along with its dependencies, libraries, and
configurations into a container, Docker ensures consistent and portable environments that
can run on any system.

On the other hand, Docker Compose is a tool (Docker Plugin) that simplifies the management
of multi-container Docker applications. It allows developers to define and configure multiple

22

containers, their dependencies, and network connections using a YAML file. With Docker
Compose, developers can easily deploy and coordinate the interaction of multiple containers
as a unified application. The reason we need multiple containers is because complex web
applications use multiple environment entities, and they are best kept separately. For
example, the first container will be created for the PHP-FPM client, while the second one
would contain the MySQL client and Database.

For PHP applications developed with Symfony, Docker and Docker Compose offer several
benefits:

- Docker ensures that the development environment remains consistent across
different machines and platforms. By packaging the application and its dependencies
into containers, developers can work in an environment that mirrors the production
setup, reducing the likelihood of environment-related issues.

- Docker enables developers to specify and manage the dependencies required by
their Symfony application. This ensures that the correct versions of PHP, web servers
(such as Nginx or Apache), database servers (like MySQL or PostgreSQL), and other
necessary services are available and properly configured within the container. It
simplifies the setup process and eliminates the need for manual installation and
configuration of dependencies.

- Docker allows developers to create reproducible builds of their Symfony application.
By defining dependencies and configurations in a Dockerfile, developers ensure that
others who build the application using the Docker image will achieve the same
results. This promotes collaboration and facilitates sharing the development
environment with team members.

- Docker makes it easy to scale Symfony applications by running multiple instances of
the application containers. Each container operates independently and can handle
requests, providing scalability and improved performance. Additionally, containers
provide isolation, so issues in one container do not impact others, enhancing overall
application stability.

- Docker and Docker Compose simplify the development workflow for Symfony
applications. Developers can quickly set up the development environment with all
the necessary services and dependencies by executing a single command. This
eliminates the manual setup process and reduces the time spent on environment
configuration. Moreover, Docker integrates seamlessly with development tools,
version control systems, and CI/CD pipelines, enhancing productivity and facilitating
efficient development practices.

To sum up, Docker and Docker Compose are valuable tools for PHP application development
with Symfony. They offer consistent, reproducible, and isolated environments, simplify
dependency management, support scalability, and streamline the development workflow.
These tools enhance productivity, promote collaboration, and provide an overall improved
development experience when working with Symfony applications, which made them an
essential part of the development stack of Cloud-Vitae.

23

2.6 Database management with MySQL
A database is an organized and stored collection of data in a computer system that allows for
efficient management, retrieval, and manipulation of information. It is extensively utilized in
software development to store and manage application data persistently.

MySQL is a renowned open-source relational database management system (RDBMS) that is
widely employed in Symfony PHP applications. It is the number one choice in web
development due to its performance, reliability, and user-friendly nature. MySQL follows the
relational database model, where data is organized into tables with rows and columns, and it
supports SQL (Structured Query Language) for querying and manipulating the data. [11]

Symfony and PHP applications often utilize MySQL for several reasons:

- MySQL provides a robust and efficient solution for storing relational data. It enables
developers to define tables with structured schemas, establish relationships between
tables, and perform complex queries to retrieve and manipulate data. This makes it
suitable for applications with intricate data structures and relationships.

- MySQL is renowned for its scalability and performance capabilities. It can handle high
volumes of concurrent requests, making it well-suited for applications that experience
heavy traffic and require quick response times. Additionally, MySQL offers various
optimization techniques and indexing mechanisms to enhance query performance
and overall application speed.

- Symfony has built-in support for MySQL through Doctrine, its database abstraction
layer. Doctrine provides an Object-Relational Mapping system (chapter 2.2.2) that
enables developers to interact with the database using PHP objects instead of writing
raw SQL queries. This simplifies database operations, improves code maintainability,
and ensures compatibility between the Symfony framework and MySQL.

- MySQL benefits from a large and active community of developers and users, resulting
in abundant documentation, tutorials, and resources. It also integrates well with
Symfony through various third-party tools, libraries, and frameworks, further
enhancing development productivity and efficiency.

- MySQL has a proven track record of stability and reliability. It has been extensively
used in production environments for many years, powering numerous websites,
applications, and enterprise systems. Its maturity and robustness make it a trusted
choice for applications like Cloud-Vitae that require a stable and dependable database
solution.

2.7 CSS and Styling Components
CSS (Cascading Style Sheets) is a language used to determine the visual appearance of HTML
documents. It specifies how elements on a webpage should be displayed, including properties
like layout, colors, fonts, and spacing. By separating the content and structure from the
design, CSS allows for consistent styling across multiple pages.

In the Symfony framework, Webpack Encore (chapter 2.2.3) is a library that handles frontend
assets, including CSS files. It streamlines the process of bundling, optimizing, and integrating
CSS files into Symfony applications. With Webpack Encore, developers can organize and
incorporate their CSS files into their Symfony projects. CSS files are treated as assets, and
Webpack Encore provides a simple API for configuring how they are handled. Developers can

24

define entry points for CSS files, specify dependencies, and utilize various loaders and plugins
to process and transform the CSS. During the build process, Webpack Encore integrates CSS
with other frontend assets like JavaScript (chapter 2.8) and images. It employs loaders to
process CSS files and their dependencies, such as preprocessors like Sass or Less. These
loaders transform the CSS code, enabling advanced features like nesting and variables.
Additionally, Webpack Encore applies optimizations like minification and concatenation to
reduce file size and improve performance.

Once the build process is complete, Webpack Encore generates optimized CSS files that can
be included in the Symfony application. These CSS files are referenced and utilized in Twig
templates or other parts of the application using Symfony's asset management system.
Webpack Encore supports CSS modules, allowing developers to scope CSS styles to specific
components or elements. This helps prevent conflicts and promotes modular development
practices.

2.8 JavaScript and Asynchronous Server Communication with AXIOS
JavaScript (JS) is a widely used programming language that enables developers to create
interactive and dynamic features on web pages. It allows for the manipulation of webpage
content, responsiveness to user actions, and asynchronous communication with servers to
retrieve or send data.

In the realm of Symfony web applications, Axios is a popular JavaScript library used to
facilitate HTTP requests from the client-side to the server-side. It simplifies the process of
exchanging data with the server using asynchronous requests.

Cloud-Vitae employes Axios for the following reasons:

- Symfony often necessitates retrieving data from the server without refreshing the
entire webpage (SPA, chapter 1.3.2.3). Axios permits developers to make
asynchronous requests to Symfony endpoints, enabling data retrieval in the
background. This approach supports dynamic updates and delivers a smoother user
experience.

- Symfony applications frequently rely on RESTful APIs to interact with external services
or exchange data between the client and server. Axios offers a convenient and
adaptable solution for communicating with these APIs by facilitating HTTP requests
(such as GET, POST, PUT, DELETE) and managing the resulting data.

- Axios streamlines error handling by providing built-in mechanisms to intercept and
manage errors that may occur during HTTP requests. It allows developers to establish
global error handling or customize error handling on a per-request basis, thereby
enhancing the resilience and dependability of Symfony applications.

- Axios employs JavaScript Promises, which are objects representing the eventual
completion or failure of an asynchronous operation. Promises simplify the
management of asynchronous tasks, enabling developers to chain multiple requests
or execute actions based on the success or failure of a request.

- Axios is designed to operate consistently across different web browsers, ensuring
compatibility and reliable performance for Symfony applications.

By leveraging Axios and Symfony Framework, Cloud-Vitae gains the ability to effectively
manage and control data communication between the client-side JavaScript code and the

25

server-side PHP code. Axios offers a user-friendly and efficient approach to making HTTP
requests, handling responses, and seamlessly integrating with RESTful APIs. Overall, Axios
enhances the functionality and interactivity of Symfony web applications by facilitating
seamless communication between the client and server components.

2.9 Software Versioning with GitHub
Upon acquiring these tools, the application development process can begin, with a focus on
implementing each functionality incrementally. The ongoing and active communication with
the client necessitates the maintenance of a continuously functional version of the
application. Furthermore, it is crucial to consider the potential for future enhancements and
revisions, ensuring that the application's structure is adaptable to accommodate these
changes. Embracing a versioning approach offers significant advantages. For instance, while
the latest version is being tested by clients, the development team can simultaneously work
on the subsequent version, addressing identified issues and introducing new functionalities.
Software versioning has emerged as a prevalent practice within the industry, and its value is
evident, even when the development team comprises a sole individual.

To accomplish this objective, developers rely on Version Control Systems (VCS) technologies.
Throughout the years, numerous VCS systems have been developed, but the predominant
choice in contemporary software development is GIT, which is utilized for applications across
various project types, encompassing personal, open-source, as well as large-scale endeavors.
The fundamental concept in VCS revolves around the repository, which serves as the
centralized storage location for all project files. In addition to serving as a storage solution,
the repository facilitates comprehensive historical tracking of previous versions. This
historical insight contains details such as the specific code updates made by individual
developers, the ability to revert to earlier versions, and the creation of branches to enable
parallel development that can subsequently be merged.

Version Control Systems (VCS) are categorized into two distinct types: Centralized Version
Control Systems (CVCS) and Distributed Version Control Systems (DVCS). CVCS examples
include SVN CVS, whereas DVCS examples include GIT and Mercurial. The primary distinction
between CVCS and DVCS lies in the centralization versus distribution of the repository. CVCS
relies on a central server for version control operations, while DVCS allows each developer to
possess their own copy of the repository, providing enhanced autonomy and flexibility. DVCS
systems typically offer advanced branching and merging capabilities, facilitating more
intricate development workflows. [12]

In the development of Cloud-Vitae, a DVCS system, specifically GIT, was employed. GitHub is
a platform that integrates GIT, a free and open-source program initially introduced in the
Linux Kernel. GIT is implemented in C to ensure robust performance. It offers a Command Line
Interface (CLI) by default, allowing the execution of specific tasks through commands.
Alternatively, GIT can be utilized through various integrated tools. GitHub was chosen for its
accessibility, widespread familiarity, and user-friendly nature, which proved essential for our
test users. Additionally, considering the importance of VCS in the development process, PHP
Storm was utilized as the Integrated Development Environment (IDE), since it incorporates
GIT as a VCS by default.

26

3. Architectural Patterns, OOP and Entity Management
Architectural patterns in programming are design principles or templates that offer solutions
to common software development problems. They assist developers in organizing and
structuring code to create robust, maintainable, and scalable software systems. These
patterns define how different components of an application interact, their responsibilities,
and relationships. Architectural patterns provide a framework for designing the overall
structure of an application, including its layers, modules, and components. They address
problems like separation of concerns, scalability, flexibility, code reusability, and testability.
By following these patterns, developers can build software systems that are easier to
comprehend, modify, and maintain.

Some commonly used architectural patterns include:

- MVC (Model View Controller) separates an application into three components - the
model for data and business logic, the view for presentation and user interface, and
the controller for managing data flow between the model and view. MVC promotes
modularity and separation of concerns.

- Layered architecture divides an application into multiple layers, each responsible for
specific functionalities. Typically, these layers include presentation, business logic, and
data access layers. Layered architecture supports modularity, maintainability, and
abstraction.

- Microservices architecture structures an application as a collection of small,
independent services that communicate via APIs. Each service focuses on a specific
business capability and can be developed, deployed, and scaled independently.
Microservices promote flexibility, fault isolation, and scalability.

- Event-driven architecture relies on events and event handlers for communication
between components. It allows for asynchronous and loosely coupled interactions by
producing and consuming events. Event-driven architecture offers scalability,
responsiveness, and extensibility.

- DDD (Domain Driven Design) emphasizes building software systems that align closely
with the problem domain. It involves modeling complex domains and implementing
intuitive business logic that reflects the problem domain.

3.1 Symfony 6 Framework Architecture
Symfony 6 adopts the Model View Controller (MVC) architectural pattern, which partitions an
application into three primary components: Model, View, and Controller. The Model handles
the data management and business logic, while the View is responsible for rendering the
presentation layer. Acting as a mediator, the Controller manages user input and orchestrates
the interaction between the Model and the View.

Regarding file organization, Symfony 6 employs bundles to structure the codebase,
representing distinct application features or functionalities. Each bundle encompasses
dedicated directories for Controllers (found under “app/src/Controller”), Views (named
templates, found under “app/templates”), and Models (I.e. entities, found under
“app/src/Entity”). This approach fosters a clear segregation of responsibilities and encourages
modular development practices.

27

Symfony 6's file system encompasses directories such as configuration, public assets,
templates, and source code. The configuration directory houses assorted configuration files,
while public assets like CSS and JavaScript are typically stored within the public directory.
However, this isn’t the case for Cloud-Vitae since it uses Webpack Encore to dynamically load
such assets, which can be found outside the public directory (under “app/assets”). The
templates directory contains Twig templates, which generate the application's output. Finally,
the source code directory contains bundle-specific directories encompassing Controllers,
Models, and related files (found under “app/src”).

The utilization of the MVC architecture in Symfony 6 ensures a distinct separation of data,
logic, and presentation, facilitating easier maintenance and promoting code reusability. The
well-structured file system complements this architecture, offering an organized framework
that empowers developers to work efficiently and collaborate effectively.

3.2 Model View Controller Architecture
The MVC (Model-View-Controller) architecture is a widely used design pattern in
programming that helps structure and organize code by separating different concerns within
an application. It divides the application into three key components: the Model, the View, and
the Controller.

The MVC architecture is favored in Symfony and other frameworks due to its ability to
promote separation of concerns, modularity, and maintainability. By dividing code into
distinct components, developers can more effectively organize their codebase. This
separation facilitates easier code maintenance, testing, and reuse. Symfony utilizes the MVC
architecture to structure its framework and encourages developers to follow this pattern
when building Symfony applications. By adopting MVC, Symfony promotes consistent code
organization and facilitates collaboration among developers working on Symfony projects.
The clear separation of concerns inherent in MVC aligns with Symfony's philosophy of
decoupled components, making it a natural choice for the framework.

In summary, the MVC architecture is a widely employed design pattern that divides an
application into Model, View, and Controller components. It is embraced in Symfony and
similar frameworks due to its capacity to provide a well-structured and organized codebase,
promote code reusability and maintainability, and align with Symfony's architectural
principles.

3.2.1 The Model component
The Model represents the data and business logic of the application. It encapsulates the data
structures, performs operations on the data, and interacts with data sources like databases.
In Symfony, entities or data models are commonly used to implement the Model. Cloud-Vitae
uses a very well-structured entity scheme inspired by real-life concepts which greatly
contributes to the model component.

The Model component in this application is responsible for encapsulating and managing the
CV data and implementing the necessary operations and rules associated with CV creation,
management and sharing. It is also responsible for defining the data structure and
relationships, as well as implementing the business rules and operations associated, while
managing the storage and retrieval of CV data in the database. It is essentially a component
that materializes the object-oriented doctrine (chapter 3.3).

28

One of the most important attributes of the Model component is creating, maintaining and
updating entities, which are object representations defined by classes that hold variables
capable of storing values for fundamental data objects. These data objects encapsulate crucial
structures of application data. For example, Cloud-Vitae needs a User Entity, since that is the
target audience for the application.

An Entity class in Symfony is a simple PHP file that defines how multiple entries of information
grouped by attributes should act in our application. It contains a namespace (a piece of code
that tells the application where it is compiling from), multiple use statements (lines of code
that individually point to another PHP Class that contains already implemented functionalities
that we want to use in our Controller, such as the Doctrine’s ORM or the Entity’s Repository
which is another piece of the Model component), one or more annotated variables, each
representing a real-life attribute of our Entity, and specific entity methods such as getters and
setters (necessary methods for retrieving or altering data encapsulated in a class).

For classic Entities such as User, Symfony already has pre-defined interfaces that can be
implemented (for User Entity, the User class implements the “UserInterface” interface, and if
we need password authentication for the User, it also implements the
“PasswordAuthenticatedUserInterface” interface).

When creating Entities in Symfony, it is also standard to use Doctrine’s ORM Annotations. This
way of writing code allows us to specify to the application more detailed information on how
the Entity should be mapped to the database client. With all this information, we can already
create a basic User Entity implementing email and password.

29

3.2.2 The View component
The View is responsible for the presentation layer of the application. Its role is to display the
user interface and render the data provided by the Model. In Symfony, the View is typically
created using Twig templates, a powerful and flexible templating engine (chapter 2.2.4). In
general, the application has its views split into three categories.

The first category is composed by the entry routes, meaning the pages the user interacts with
before creating an account or while creating an account, such as the landing page, login and
register pages, the LikedIn sign in page and the creation page.

The second view category contains all the pages of the application that are responsible for
rendering the CV. This is the part of the application that imitates a SPA (Single Page
Application, chapter 1.3.2.3), even though each page is contained in its own file. This is
achieved by implementing a fast and seamless re-render of the page each time a heavier
request is made by the user, such as changing the CV template.

The last view layer consists of general items, meaning the items that are rendered the most
in the application. To keep this concept consistent in production, Cloud-Vitae stores all the
general files in a subdirectory names “general”, and such a directory can be found on all levels
of the application, be it in the assets section (CSS files, JS files and other assets) or the
template section (Twig files and Email templates). In order to be flagged as general, a file has
to either contain information that is rendered on multiple pages (such as a menu that appears
on multiple pages) or to have rules used on multiple pages (such as a common style sheet
that tells the application how to background should look on multiple pages).

This layered approach is not a common one, and it is not enforced by the view component.
By today’s standard it is perfectly normal to have all the views in the same category, but since
Cloud-Vitae is an application that expects to handle extremely large chunks of data, this
separation seemed necessary to further improve caching systems and request efficiency on
the server.

3.2.3 The Controller component
The Controller acts as an intermediary between the Model and the View. It handles user input,
triggers relevant actions based on that input, and communicates with the Model to retrieve
or update data. It also interacts with the View to render the appropriate response. In
Symfony, Controllers are implemented as PHP classes that manage the routing and logic of
the application. Cloud-Vitae contains a series of controllers which make the application run
smoothly.

A Symfony Controller is nothing more than a PHP Class that implements Symfony’s pre-
defined “AbstractController” Interface. It contains a namespace (a piece of code that tells the
application where it is compiling from), multiple use statements (lines of code that
individually point to another PHP Class that contains already implemented functionalities that
we want to use in our Controller, such as the Doctrine’s “EntityManagerInterface” interface
or Symfony’s “HTTP\Request”), and one or more methods, each representing a route for the
application.

We can read, write and interpret such methods by using PHP’s annotation System:

30

This code writing method allows us to specify and define to the application specific attributes
of a route, such as its source and possible request parameters, a name, allowed request
methods and many others, without having to pass any additional information to the method.
This is an industry standard for Symfony (the annotation syntax changed a bit over major
releases, but it is still used on all versions), and Cloud-Vitae's Controllers strictly respect these
rules.

A controller method is defined by its name, parameters (which must contain but are not
limited to request parameters specified in the annotation), and a return type. To avoid errors,
the name of the method just has to be unique in the controller it is located in. But in order to
keep an even standard across the applications controllers, Cloud-Vitae matches the method
names to the route names as follows:

- When there is a route name available (I.e. “app_user_profile”), the method has the
same name but respecting PHP’s typing standars (I.e. “appUserProfile()”), and in the
extreme cases where a separate method is needed for each request type (I.e. separate
methods for GET and POST), the methods name contains the request type at the end
(I.e. “appUserProfileGET()”, “appUserProfilePOST()”).

- When there is no route name available (the name attribute is an optional one in
Symfony, and you only need to name routes when you have to specifically call them
by name from outside that specific Controller, which in almost all cases is a call to a
render return method, respectively a GET request; so for POST requests that have no
View component, there will never be a need to be addressed by name), the methods
are named by what they do in the most specific but clear way possible. For example,
we have a route that accepts requests for changing a user’s profile picture.The
annotation defines no name attribute, but we have enough information already to
write the methods name as “appUserChangeProfilePicturePOST(int $user_id)”.

The last defining factor of a controller method is its return type. This is a clean way of telling
the Controller component beforehand what it should do after processing a specific request.
There are many options, but the most used ones in Cloud-Vitae are returning a render (it
renders the specified view for the user after processing its request), returning a redirect (it
redirects the user to the specified route after processing its request), returning a
JsonResponse (this return is designed for asynchronous requests that happen without the
user seeing them, and returns the response information without refreshing the page) and so
on. All of the above are a response return type, and they are defined in a method as follows:
“appUserChangeProfilePicturePOST(int $user_id): Response”.

After we defined the route annotations, method name and response types, the only thing left
is writing the body of the method. This is where the actual request processing happens, and
we might need to add other method parameters over time in order to achieve the route’s
final goal. For example, we might want to create a user register route.

31

In this case, the Controller component has to directly interact with the Model component,
since we must create a user entry in the database. For this, Doctrine already provides us the
easy to use “EntityManagerInterface”, which allows us to interact with and manipulate entity
structures from the Model component.

Since the user has to complete a form and then submit the data in a POST request, we want
to also call the Request component as a method parameter to be able to access this data.

Finally, we will add the processing code and return the desired response, in our case a redirect
to the home page of the application after registering.

These are of course just the basics of creating a Controller, and for a complete overview of
the register method explained here it is recommended to take a look at the complete code,
which can be found under “app/src/Controller/RegistrationController.php”.

3.3 Object Oriented Programming
Object Oriented Programming (OOP) emerged in the 1960s and underwent further
development in the 1970s and 1980s through the efforts of various computer scientists and
researchers. The core ideas behind OOP drew inspiration from earlier programming languages
and concepts. However, the actual term "Object Oriented Programming" was coined by Alan
Kay and his team at Xerox Palo Alto Research Center (PARC, Silicon Valley, California, USA)
during the early 1970s.

Alan Kay, a notable computer scientist and OOP pioneer, played a crucial role in advancing
OOP concepts and creating programming languages that supported them. His work was
notably influenced by Simula, a programming language developed in the 1960s. Simula
introduced the concept of classes and objects, establishing the foundation for OOP. It also
introduced class inheritance, enabling the inheritance of properties and behaviors between
classes and forming an object hierarchy. [13]

Building upon Simula's concepts, Alan Kay and his colleagues at Xerox PARC developed
Smalltalk, which is considered one of the earliest fully object-oriented programming
languages. Smalltalk revolutionized software development by emphasizing the use of objects
as the fundamental building blocks. It popularized key OOP concepts like encapsulation,
inheritance, and polymorphism.

32

Object-Oriented Programming (OOP) is a programming paradigm that revolves around
objects, which are instances of classes. OOP emphasizes the organization of code based on
these objects, which combine both data and behavior. It provides a structured approach to
software development, simplifying the management of complexity, promoting code
reusability, and enhancing maintainability. It is widely adopted in programming languages like
Java, C++, Python, PHP, and many others. It follows several fundamental principles such as:

- Encapsulation, which involves grouping data and related methods or functions into a
single unit, known as an object. This promotes data privacy and allows for better code
organization and modularity.

- Inheritance, which enables classes to inherit properties and methods from other
classes, establishing a hierarchical relationship. This facilitates code reuse and
facilitates the creation of specialized classes based on existing ones.

- Polymorphism, which allows objects of different classes to be treated as objects of a
common superclass. It provides flexibility by using a single interface to represent
multiple types, enhancing code extensibility.

- Abstraction, which focuses on representing essential features of an object while hiding
unnecessary details. It simplifies complex systems by offering a high-level view and
exposing only relevant information.

3.3.1 Object Oriented Programming in PHP
PHP is widely used for building robust and maintainable applications through the
implementation of Object-Oriented Programming (OOP). PHP provides extensive support for
OOP concepts, equipping developers with a diverse range of features and syntax to effectively
utilize them and bringing several benefits.

Using OOP in PHP, code organization becomes more manageable as developers can structure
their code into classes, serving as templates for creating objects. These classes encapsulate
related data and functions, facilitating better code organization and promoting modular
development. Consequently, code becomes easier to understand, maintain, and reuse. OOP
also enables the creation of reusable classes, allowing the instantiation of multiple objects.
This promotes code reuse across different sections of an application or even across various
projects, resulting in saved development time and effort.

PHP's OOP features, including access modifiers (public, private, protected), support
encapsulation. Encapsulation ensures that the inner workings and data of a class are shielded
from external access, enhancing data security and preventing unauthorized modifications.
PHP's OOP also allows classes to inherit properties and methods from other classes,
establishing a hierarchical relationship (Inheritance principle). PHP facilitates class extension
using the "extends" keyword, enabling code reuse and creation of specialized classes based
on existing ones. Inheritance also facilitates the implementation of polymorphism, which in
PHP allows objects of different classes to be treated as objects of a common superclass or
interface. This flexibility empowers developers to write more versatile code that can work
with various object types. Polymorphism simplifies code maintenance and enhances the
flexibility and extensibility of the application.

PHP boasts a variety of frameworks, such as Symfony, Laravel, and Yii, which heavily embrace
OOP principles. These frameworks provide pre-built components and adhere to OOP

33

patterns, simplifying the development of complex web applications. OOP aligns well with the
architectural and design patterns commonly utilized in popular PHP frameworks.

In conclusion, employing OOP in PHP brings advantages in terms of code organization,
reusability, encapsulation, and flexibility. It enables the creation of modular and maintainable
applications, reduces code duplication, and enhances code readability. Embracing OOP in PHP
promotes a structured approach to development and fosters collaboration among
developers, making it highly advantageous for projects of varying sizes.

3.3.2 Object Oriented Programming in Symfony and MVC architectures
Object Oriented Programming plays a vital role in Symfony application development, as the
framework is built upon OOP principles and encourages their use. As previously stated,
Symfony implements the Model View Controller (MVC) architecture, a widely adopted design
pattern. The MVC pattern divides an application into three components: Model, View, and
Controller, but OOP concepts are also greatly utilized to implement each component
effectively.

In Symfony, the Model component represents entities or data models, defined as classes.
These classes encapsulate data structures and business logic. OOP enables developers to
define entity classes with properties and methods that define data behavior and interactions.
Symfony's Doctrine ORM provides tools for mapping entities to databases, ensuring seamless
data persistence and retrieval.

The View component in Symfony handles the presentation layer using Twig templates. OOP
principles are employed to organize templates into reusable components, facilitating easier
maintenance and modification of UI elements. Twig templates leverage inheritance and
composition, enabling the creation of modular and reusable views.

Controllers act as intermediaries between the Model and the View. They are implemented as
PHP classes in Symfony, allowing encapsulation of related actions and behaviors. OOP
principles guide the definition of Controller classes, which interact with the Model to retrieve
or update data and communicate with the View to render appropriate responses. Symfony's
routing system maps requests to specific Controller actions based on predefined routes.

OOP in Symfony promotes code organization, reusability, and maintainability. Encapsulation,
inheritance, and polymorphism enable the creation of modular and extensible components.
This adherence to OOP contributes to the overall MVC architecture of Symfony, ensuring a
clear separation of concerns and facilitating the development of scalable and maintainable
applications.

Additionally, OOP in Symfony integrates well with other features and tools like dependency
injection and event systems. It enables the adoption of design patterns and architectural
principles aligned with MVC, such as service-oriented architecture and domain-driven design.
Embracing OOP fosters a structured and consistent development approach in Symfony,
enhancing collaboration among developers and facilitating better understanding of Symfony
projects.

34

3.4 Entity Management
In programming, entity management refers to the management and manipulation of entities
within a software application. An entity represents a specific and identifiable object or
concept that is relevant to the application's domain. For instance, entities can include users,
products, orders, or other real-world entities necessary for the application's functionality.
Even though this topic has been in some sense already approached in this thesis, it was only
from the perspective of the Entities that constitute the Model component of an MVC
framework. However, entity management is a complex part of programming, that resumes to
much more than just implementing an MVC component. They represent an essential step in
building a modern OOP application such as Cloud-Vitae.

Entity management encompasses tasks such as creating, reading, updating, and deleting
entities, commonly known as CRUD operations. These operations enable the management of
entity data and the execution of business logic associated with the entities. Entity
management often goes hand in hand with database management since entities are
frequently stored and retrieved from a database. The persistence layer of an application,
responsible for database interactions, plays a crucial role in entity management. It provides
functionality for mapping entities to database tables, handling data retrieval and storage, and
facilitating querying and manipulation of entity data.

To implement entity management, techniques such as Object-Relational Mapping (ORM) are
commonly used. ORM allows entities to be represented as objects in the programming
language and mapped to corresponding database tables. This approach simplifies database
operations by leveraging object-oriented programming techniques and abstracting the
complexities of direct database access.

In summary, entity management revolves around the handling and manipulation of entities
in a software application. It involves operations like creating, reading, updating, and deleting
entities, often with the assistance of a persistence layer and database management
techniques like ORM. Effective entity management is essential for developing applications
capable of efficiently and accurately processing domain-specific data.

3.4.1 Entity Relationship Diagrams
An Entity-Relationship Diagram (ERD) is a visual representation that depicts the entities,
attributes, and relationships within a system or database. It is commonly used in software
engineering and database design to model data structure and behavior in a clear and
organized way.

To create an ERD for modern web applications, we start by identifying the main entities or
objects that are relevant to our web application. These entities represent the major
components or concepts that need to be stored and managed in the system. For example, in
an e-commerce application, entities could include customers, products, orders, and reviews.
After that we will determine the attributes or properties that describe and characterize each
entity. These attributes represent the specific data elements associated with each entity. For
instance, a customer entity may have attributes such as name, email, and address, while a
product entity may have attributes such as name, price, and description.

It il also crucial to identify the relationships between entities. Relationships define how
entities are connected or associated with each other. Common relationship types include

35

one-to-one, one-to-many, and many-to-many. For example, in an e-commerce application,
there would likely be a one-to-many relationship between customers and orders, as a
customer can have multiple orders, but a specific order can only have one customer.

Cardinality refers to the number of instances of one entity that can be associated with another
entity. Modality specifies whether the relationship is mandatory (denoted by a solid line) or
optional (denoted by a dashed line). Cardinality and modality help define the nature of the
relationship between entities. Both of these are great helpers in building and interpreting an
ERD. It is also extremely helpful to utilize specialized diagramming tools or software that
support entity-relationship modeling to create the actual ERD. These tools provide user-
friendly interfaces for drawing entities, attributes, relationships, and other elements. They
may also offer features to automatically generate SQL scripts or database schemas based on
the ERD. However, they key to a great ERD lies in reviewing and refining to ensure accuracy
and completeness, revisiting the entities, attributes, and relationships to align them with the
requirements of our web application, and iteratively refining the ERD until it accurately
represents the data structures.

3.4.2 Cloud-Vitae's ERD and Entity Schema
For Cloud-Vitae, creating the Entity Schema was a straightforward process. Since a CV
document is oriented around the user and the user only, we had to split the user's information
in two categories to avoid redundancy or hard to maintain code and logic.

The first category contains all the information about the user that cannot have multiple
entries, generally personal information, such as first and last name, city and country of
residence, profile picture and some logical flags. This is information that can be changed or
replaced at any given time by the user but cannot have more than one instance. For example,
a user cannot have multiple email addresses associated.

The second category encompasses all the information that the user can add multiple entries
for and is separated as different entities based on their nature. Examples of this would be
languages spoken by the user, work experience and so on. As we can see (in the fig.), each
user can have one or more of these items individually, and they are grouped as separate
entities. The work experience is its own entity, so are the spoken languages, and so is the
education, since they all have different attributes and represent different real-life scenarios.

This concept has already been explored in the programming world in the topic of database
relations. Database relations establish connections between tables in a relational database
management system (RDBMS). One common type of relation is the "one-to-one" relationship.

In a one-to-one relationship, one record in a table is associated with only one record in
another table, and vice versa. Each record in one table corresponds to a single record in the
related table. This type of relationship is useful when two entities have a unique and exclusive
connection. For example, in the Cloud-Vitae database if we were to make a table just with
email addresses, the relation between users and emails would be one to one.

In a many-to-many relationship, multiple records in one table are associated with multiple
records in another table. This relationship is implemented using an intermediate table, often
referred to as a junction table or mapping table. The junction table holds the combinations of
related records from both tables. For example, in the Cloud-Vitae database if we were to

36

make a table dedicated to University Diplomas (such as Bachelor’s, Master’s), the relation
between this table and the users would be many-to-many.

A one-to-many relationship involves one record in a table being associated with multiple
records in another table. This relationship is the one used in Cloud-Vitae between the user
entity and all other entities. For example, in the Language table, the relation between users
and languages is one-to-many, since one user can have multiple languages associated, but
each language has only one user.

A many-to-one relationship is the inverse of a one-to-many relationship. It occurs when
multiple records in one table are associated with a single record in another table. This
relationship is often used when multiple entities relate to a common entity. For example, we
can see the previously discussed one-to-many relation as a many-to-one relation, if we
inverse the perspective and look from the languages table. Its relationship with the user table
is many-to-one.

A self-referential relationship occurs when records in a single table are related to other
records within the same table. This type of relationship is useful when modeling hierarchical
or recursive data structures. For instance, in a database for employees, each employee record
may have a supervisor field that references another employee within the same table. Cloud-
Vitae does not have and could not have such a relationship, since in this ecosystem a user and
its CV are completely unrelated and irrelevant to other users and their information.

4. Application Security
Security in a web application involves implementing measures and practices to safeguard the
application and its users against unauthorized access, data breaches, and malicious attacks.
It encompasses protecting sensitive data, ensuring user privacy, and preventing unauthorized
manipulation or misuse of the application. During the development of Cloud-Vitae, the largest
amount of time was allocated to engineering and implementing the best security patterns,
since the application will process and handle large amounts of private and extremely sensitive
and identifiable personal information.

37

The security implementations of Symfony have been a big help in building the most secure
ecosystem possible for Cloud-Vitae as a skeleton for most of the industry standard
requirements in this field has been already provided by the framework.

4.1 Authentication
This process verifies the identity of users accessing the application, typically involving
usernames, passwords, and additional factors like two-factor authentication or biometrics.
Strong authentication mechanisms ensure that only authorized users can access the
application.

Cloud-Vitae implements a strong and refined authentication system, in which the user is
required to register an account before being allowed to interact with the application.

4.1.1 Email Registration and Authentication
The registration and authentication process of this application is split in two possible actions,
the first one being by email. When the user decides to create an account via email in order to
use the application, he will be redirected to the register route (/register). Here a registration
form is located, where the user is required to input his personal information such as email
address, a password for his account and to agree to the terms and conditions of usage
(chapter 4.10.x). After a successful registration, the application automatically sends a
verification email to the registered email address. The user must follow the link contained in
this email in order to validate the account and be authorized to use the application further.
There is a flag on the database that monitors this specific action. Until the user verifies its
email address with this action, all the applications pages that implement CRUD (create, read,
update, delete) functionalities will render an error page explaining why the user is not
authorized to view this page, and showing the option to resend the verification email if
needed. The Controller component is responsible for this, and it carefully checks the database
flag first for every request the user makes. If it is not verified, the user is immediately denied
access before any other command is executed by the controller.

4.1.2 LinkedIn Registration and Authentication
The second option regarding user registration and authentication is composed by the
applications link to the LinkedIn API. Third-party authentication has become a widely used
functionality on most web applications today, due to its high level of security and a simpler
process for the users and developers to follow. In Cloud-Vitae's development there were two
platform candidates for such a system, respectively Google and LinkedIn. Despite the fact that
Google has a much higher user base, LinkedIn was the desired choice since its domain of
interest and action is the same one as Cloud-Vitae's.

4.1.2.1 Application Programming Interface
An API, which stands for Application Programming Interface, serves as a set of guidelines,
protocols, and tools that facilitate communication and interaction between different
software applications. It establishes the methods and data formats that applications can
utilize to request or exchange information and carry out specific tasks.

By acting as an intermediary, an API allows applications to access the services and
functionality provided by other applications, systems, or platforms in a standardized and
controlled manner. It abstracts away the complexities of the underlying implementation and
presents developers with a simplified interface to work with.

38

APIs can be classified into several types based on their purpose and functionality:

- Web APIs are specifically designed for web applications and enable access to resources
and services over the internet. They typically employ HTTP protocols and support
various data formats such as JSON or XML for seamless data exchange. Web APIs
empower developers to integrate third-party services, retrieve data from remote
servers, or perform actions on external systems.

- Library or Framework APIs are provided by software libraries or frameworks and offer
pre-built functions and modules that simplify application development. Library APIs
provide access to reusable code components, while framework APIs define the
structure and conventions for constructing applications within a specific framework.

- Operating system APIs are made available by operating systems to enable applications
to interact with system resources and services. They provide functions for tasks such
as file management, network communication, device access, and process
management. Operating system APIs are platform-specific, enabling developers to
create applications that can run on a particular operating system.

- Database APIs facilitate application interaction with databases, allowing operations
such as storing, retrieving, updating, and deleting data. They establish a standardized
approach for connecting to databases and executing queries or commands. Database
APIs can be specific to a particular database management system or adhere to
industry-standard protocols such as SQL for relational databases.

APIs play a vital role in enabling integration, interoperability, and extensibility among various
software systems. They foster code reusability, simplify development efforts, and promote
collaboration by enabling developers to leverage the functionality and services offered by
other applications or platforms. APIs have been instrumental in driving the growth of modern
web applications, mobile apps, and the interconnectedness of diverse digital services and
systems. Since Cloud-Vitae is a web application, the choice of a Web API was obvious, and the
one used is LinkedIn’s API as it has a large user base, extremely useful tools for user
registration and authentication and an easy to set up connection with the application.

4.1.2.2 LinkedIn’s API
LinkedIn offers an API (Application Programming Interface) that provides developers with
tools, protocols, and endpoints to interact with LinkedIn's platform and access its features
and data. This API allows developers to integrate LinkedIn functionalities into their own
applications, websites, or services. LinkedIn provides several APIs that serve different
purposes:

- LinkedIn OAuth 2.0 API facilitates authentication and authorization services.
Developers can use it to implement LinkedIn's authentication system, allowing users
to log in to their applications using their LinkedIn credentials.

- With LinkedIn Share API developers can incorporate LinkedIn sharing capabilities into
their applications. It enables users to share content, such as articles, blog posts, or job
listings, from within the application to their LinkedIn profiles or networks.

- LinkedIn Marketing Developer Platform API targets marketers and advertisers. It
allows developers to create and manage advertising campaigns on LinkedIn, access
campaign analytics, retrieve company and member data for targeting purposes, and
more.

39

- LinkedIn Messaging APIs provide functionality for sending and receiving LinkedIn
messages. Developers can integrate messaging features into their applications to
enable communication between users through the LinkedIn messaging system.

- The LinkedIn Profile API grants developers access to LinkedIn user profiles and profile
data. It enables retrieval of public profile information, including names, profile
pictures, headlines, work experience, education, and other professional details.

For Cloud-Vitae's purpose the LinkedIn OAuth 2.0 API and the LinkedIn Profile API are the
most fitting and were the ones chosen for development, since the application needed above
all a third-party authentication system and a secure and reliable way to extract and
incorporate pre-existing user data. Before Cloud-Vitae finished its initial development stage,
LinkedIn unfortunately revoked most of the rights from the LinkedIn Profile API, and now
complex user information such as work experience and educations are untouchable for
developers. This was a big blocking point for the application, but since there is no other major
competitor for LinkedIn that offers a similar API, there was no choice but to continue this way.

4.1.2.3 Cloud-Vitae's API Implementation
Using LinkedIn’s OAuth 2.0 API and Profile API, users can now securely register and
authenticate on Cloud-Vitae. During this process, the user is redirected to the LinkedIn
authentication page, where this process is externally managed. After a successful
authentication, LinkedIn redirects the user back to Cloud-Vitae along with his information
such as email address, name and profile picture. The application searches for a record that
matches the user information sent and validated by LinkedIn and if it is unable to find one, it
registers and links an account for the user. If such a record is found, the user is authenticated.

Since LinkedIn is a safe and secure platform, it would have been a good approach to also
authorize the user automatically when an account is registered trough LinkedIn’s API, but in
an effort to completely remove the possibility of data breaches and leaks from Cloud-Vitae,
the email address provided by LinkedIn also needs to be verified by the user before he is
authorized access to pages that implement CRUD (create, read, update, delete)
functionalities.

4.2 Authorization
The authorization process determines the actions and resources that a user is permitted to
access within the application. It involves assigning appropriate permissions and roles to users
based on their authority level, preventing unauthorized access to sensitive functionality or
data. Cloud-Vitae's authorization system is a simple one as the general user base of the
application is not composed of multiple access groups (except admin or super-admin). The
user is authorized to access certain areas of the application based on the level of completion
of defined actions he must take.

4.2.1 The User Role System
Symfony offers a versatile and robust user role system as a component of its security
functionality. This user role system empowers developers to define and manage roles for
users in their applications, dictating their permissions and access privileges and it is
implemented in Cloud-Vitae. This user role system is implemented through a combination of
the security configuration and the user management system, containing a multi-layered
system.

40

Using role definition, developers can define roles for their application by specifying them in
the security configuration. These roles can be given descriptive names like "ROLE_ADMIN" or
"ROLE_USER" to represent varying levels of access and privileges. Users in the application can
be assigned one or multiple roles. This assignment can occur during user registration or be
managed through an administrative interface. Each user can be associated with specific roles
or a combination of roles. These two roles are the one used in Cloud-Vitae's configuration,
but the “ROLE_ADMIN” can only be attributed manually since at the moment there is only
one possible administrator for the application, the developer. The basic user role is
dynamically assigned to the user upon registration, as a specified task of the Controller
component, specifically the RegistrationController.

Developers can configure access control rules in the security configuration of Symfony to
restrict access to specific sections of the application based on user roles. Access control rules
determine which roles are required to access particular routes, controllers, or actions. For
instance, only users with the "ROLE_ADMIN" role might be granted access to the
administrative panel. However, for Cloud-Vitae's access management purpose the email
verification restriction system achieves the desired result by itself. In addition to access
control, the user role system can be employed for role-based authorization. Developers can
utilize user roles in their application's business logic to determine the actions and functionality
a user is permitted based on their assigned roles. This can involve limiting access to specific
resources or enabling specific operations exclusively for users with specific roles.

Symfony provides helpful methods and components to programmatically verify a user's
role(s). Developers can employ these utilities to confirm whether a user possesses a particular
role, enabling them to make decisions within their application's code based on the user's
role(s). By leveraging Symfony's user role system, Cloud-Vitae established role-based access
control and authorization mechanisms within the application. This enables precise control
over user permissions, ensuring that users are granted access only to the features and
functionality appropriate for their assigned roles.

4.2.1 The Email Verification System
Symfony provides a flexible and secure framework that allows developers to implement an
email verification system according to their specific requirements. Even though it is a
straightforward process to implement such a system for email-based registration using
Symfony, it does not provide any API-specific implementation, so this system has been heavily
modified to fit Cloud-Vitae's needs.

To make the registration experience consistent for the user but also to avoid major data leaks,
the logic of registering a user is converted and treated in the same manner when the LinkedIn
API responds. For both of these registration methods, the email provided must be unique
(meaning a user cannot have multiple accounts with the same email address, even if one of
them is registered via email and the other via LinkedIn) and must be validated. The user may
choose to not follow these guidelines, but the ecosystem operates in such a way that there is
no other possible method to be authorized access to Cloud-Vitae.

The email sent to the address registered by the user is also completely unique. The verification
link contains a unique key generated by the application, that is attached to the verification
request when the user follows the link. The controller component receives this key as a part

41

of the request, and checks if it is legitimate or not. This key is technically impossible to guess,
but as spam bots are evolving every year, Cloud-Vitae takes yet another security step to make
the authorization process as reliable as possible. The user must be logged in to verify the email
address. In fact, it is the only functionality granted until the email is verified. Even if someone
is able to guess or discover this secret verification key, it is not enough to simply access the
link, as the Controller will instantly deny any request that is not authorized as a veridic logged
in request from that specific account.

After the user successfully completes this process, he is flagged in the application as verified
and the Controller component can now grant him access on all the other pages each time he
makes a request.

4.3 Data Encryption
Encryption encodes data in a way that it becomes unreadable without the proper decryption
key. Encrypting sensitive data like passwords or personal information protects it even if an
attacker gains access to the data. Cloud-Vitae uses encryption to protect users' passwords, as
they are the one single piece of data that is most commonly targeted in cyber-attacks, and it
is even potentially more sensitive since most users statistically speaking tend to use the same
password for multiple accounts. Therefore, encrypting passwords is not only securing users
in the Cloud-Vitae ecosystem, but also all around the internet.

4.3.1 Password Hashing and Verification
In many applications, passwords are utilized for user authentication purposes. To ensure the
secure storage of these passwords, it is important to hash them. Symfony's PasswordHasher
component offers a comprehensive set of tools and functionalities specifically designed for
secure password hashing and verification. By leveraging this component, developers can
easily implement robust password hashing techniques, enhancing the overall security of the
application and safeguarding user credentials.

To achieve this result, Symfony's PasswordHasher employs Bcrypt hash as a cryptographic
hash function widely utilized for securely hashing and storing passwords. It is intentionally
computationally intensive, providing robust protection against brute-force attacks and
rainbow table attacks. Due to its security features, bcrypt is highly regarded as a reliable
option for password hashing in applications. By employing bcrypt, user passwords are
safeguarded, significantly reducing the likelihood of attackers obtaining the original
passwords from the stored hashes. This reinforces the overall security of the system and
ensures the protection of user accounts.

This way, the password never appears as it’s actual string representation, not even in the
database. It is stored as a 60-character long string, which contains various characters
depending on the chosen cost for the algorithm. The configuration option for bcrypt hashing
in Symfony is the cost, represented by an integer ranging from 4 to 31, with a value of 13 for
Cloud-Vitae. Increasing the cost value by one doubles the time required to hash a password.
This design allows for the flexibility of adapting password strength to potential advancements
in computational power, ensuring that the hashing algorithm remains resilient against future
improvements in computing capabilities.

Using this algorithm, Cloud-Vitae does not need the plain password when verifying user input
either. The application can check whether or not the password given by the user matches the

42

encrypted password in the database. This way the plain password appears and can be seen
only in one place, the field in which the use types it.

4.4 Input Validation
A web application should validate and sanitize user inputs to prevent attacks such as SQL
injection, cross-site scripting (XSS), or command injection. Input validation ensures that only
expected and safe data is accepted, reducing the risk of executing malicious code or
commands. Input validation in the case of Cloud-Vitae refers to the process of verifying and
sanitizing user input to ensure its integrity, safety, and adherence to pre-defined specific rules
and constraints. Symfony provides a range of tools and components that aid in input
validation, helping to mitigate security vulnerabilities caused by malicious or incorrect user
input.

Developers can define validation rules using Symfony's validation component, specifying
constraints on input fields such as required fields, data types, length limitations, format
patterns, and more. These rules can be defined using annotations, XML, YAML, or PHP
configurations. Once the validation rules are established, they can be applied to user input
during form submission or any interaction involving user data. Symfony's form component
automatically handles the validation of form fields based on the defined rules.

4.4.1 Raw Data Validation
Symfony offers a wide array of built-in validation constraints that can be applied to fields,
including constraints for non-blank fields, length restrictions, email format validation, regular
expression matching, and choice selection validation, among others. These constraints ensure
that input adheres to specific criteria and meets the desired validation requirements. In cases
where user input fails to satisfy the defined validation rules, Symfony automatically generates
error messages that can be presented to the user. These error messages provide feedback on
which fields are invalid and detail the specific validation constraint that was not met.

Symfony allowed Cloud-Vitae to also develop custom validation constraints when the built-in
constraints were insufficient. By extending Symfony's Constraint class and implementing the
necessary validation logic, developers can define their own validation constraints to suit
specific requirements. Symfony supports the concept of validation groups, which enables
developers to define different sets of validation rules for various use cases or scenarios. This
capability allows for the validation of specific fields or groups of fields based on the context
in which they are utilized. In this application, the most important validation rules applied are
for email addresses and passwords. These rules force the user to input valid email addresses
and assure bare minimum password security standards (I.e a password has to be at least 6
characters long). In addition, all input fields that appear on Cloud-Vitae are protected against
SQL injection.

By incorporating input validation in Symfony, the application ensures that user-provided data
is reliable, secure, and meets the required standards. This practice helps combat common
vulnerabilities like SQL injection, cross-site scripting (XSS), and other malicious attacks that
exploit improperly validated input.

4.4.2 CSRF Tokens
Cross-Site Request Forgery or CSRF tokens are an important security feature in Cloud-Vitae
that safeguard against CSRF attacks. CSRF attacks occur when malicious actors deceive a

43

user's browser into executing unintended and harmful requests on their behalf, exploiting the
user's authenticated session. To counter CSRF attacks, Symfony incorporates CSRF tokens.

When a form is rendered in Symfony, a unique CSRF token is created and associated with that
specific form. This token is typically a random string consisting of characters. The generated
CSRF token is securely stored either in the user's session or a cookie, depending on the
Symfony configuration. The CSRF token is embedded within the form as a hidden field or
included as part of a request header, based on the form's submission method. Upon form
submission, the application automatically verifies the CSRF token's validity. It compares the
submitted token with the one stored in the user's session or cookie. If the tokens don't match
or if no token is provided, Symfony identifies the request as invalid.

By validating the CSRF token, Cloud-Vitae ensures that the form submission originates from
the same application and user who initiated the form request. This precautionary measure
stops attackers from manipulating the user's session and performing unauthorized actions on
their behalf. Symfony simplifies the implementation of CSRF tokens by offering built-in
functionalities for token generation, storage, and validation. This integration streamlines the
process for developers, reinforcing application security by fortifying against common web
application vulnerabilities. A CSRF token is used on all forms found on Cloud-Vitae.

4.5 Secure Communication
Utilizing secure communication protocols like HTTPS encrypts data transmitted between the
user's browser and the application's server. This prevents eavesdropping, tampering, and
interception of sensitive information during transit. Secure communication in a web
application involves implementing various measures to protect the confidentiality, integrity,
and authenticity of data transmitted between the web server and the client's browser. The
goal is to ensure that sensitive information remains private, cannot be tampered with, and
that the parties involved can verify each other's identities. Some important aspects of
secure communication in a web application are:

- Transport Layer Security (TLS)/Secure Sockets Layer (SSL) which are cryptographic
protocols used to establish secure connections over the internet. They encrypt the
data exchanged between the server and the client, preventing unauthorized access or
interception. Implementing TLS/SSL requires obtaining and installing an SSL certificate
on the server, enabling HTTPS (HTTP over TLS/SSL) communication.

- The HTTPS protocol is the secure version of HTTP. It utilizes TLS/SSL to encrypt data
during transmission, ensuring the protection of sensitive information like passwords,
financial details, and personal data. HTTPS is essential for securing sensitive
transactions, login pages, and any communication involving confidential information.

- SSL/TLS certificates are digital certificates issued by trusted certificate authorities
(CAs). They verify the authenticity of the server and establish a secure connection.
SSL/TLS certificates enable the browser to validate the server's identity and ensure
that the connection is encrypted. These certificates are typically obtained and
renewed from reputable CAs.

- Encryption involves encoding data in a way that makes it unreadable to unauthorized
parties. In web application security, encryption is used to protect sensitive information

44

such as passwords, credit card numbers, and personal data. Data encryption ensures
that intercepted communication remains unintelligible without the encryption keys.

- Web applications should employ secure authentication mechanisms to verify user
identities. This often includes implementing strong password policies, multi-factor
authentication (MFA), and protection against brute-force attacks. Authorization
ensures that users have the appropriate permissions to access specific resources or
perform particular actions within the application.

- Proper input validation is crucial to prevent security vulnerabilities like SQL injection
and cross-site scripting (XSS) attacks. Input validation involves verifying and sanitizing
user input to ensure it conforms to expected formats and does not contain malicious
code.

- Web servers can include security headers in HTTP responses to enhance security.
These headers provide instructions to the browser on how to handle various aspects
of the web application, such as content security policies, cross-origin resource sharing,
and HTTP Strict Transport Security (HSTS).

- Regular security audits help identify and address vulnerabilities in a web application.
It is important to keep all software components, frameworks, and libraries up to date
with the latest security patches to protect against emerging threats.

Cloud-Vitae implements a completely secure authentication system, proper input validation
and data encryption as previously mentioned. To ensure the most secure communication
possible, a domain name was purchased for the application (www.cloud-vitae.com) alongside
a hosting plan which follows and provides veridic SSL and HTTPS protocols and certificates.

4.6 Session Management
Effective session management is crucial for securely maintaining user sessions. It involves
generating secure session identifiers, setting timeouts, and properly handling session data to
prevent session hijacking or fixation attacks. In Cloud-Vitae, the management of user sessions
in is facilitated by the Symfony Session component. This component offers a convenient way
to handle sessions and includes various essential elements.

Symfony allows developers to configure session-related parameters in the application's
configuration files. This configuration encompasses settings such as the chosen storage
mechanism (such as files, databases, or caching systems), session lifetime, session cookie
options, and other relevant options. When a user interacts with Cloud-Vitae, a session is
automatically initialized for that user. This initiation occurs upon the user's initial request to
the application. During this process, a session object is created and associated with a unique
session ID. Symfony provides diverse options for session storage, including storing session
data in files, databases, or utilizing caching systems like Redis or Memcached. The chosen
session storage mechanism is responsible for persisting the session data between requests.

Developers can interact with the session data through the session object provided by
Symfony. This object acts as a wrapper around the session data, offering methods to read,
write, and manipulate session variables. Additionally, Symfony's session component
incorporates flash messages. Flash messages are temporary messages meant to be displayed
to the user for a single request and are automatically removed afterward. These messages
are commonly utilized for displaying success messages, error messages, or notifications

45

following form submissions or other actions. For example, in Cloud-Vitae Flash messages are
used to display registration errors.

To ensure the security of session data, Symfony implements protective measures. This
involves using session IDs that are not predictable or guessable, as well as offering safeguards
against session fixation attacks and session hijacking. By leveraging Symfony's session
management capabilities, Cloud-Vitae easily manages user sessions, stores user-specific data,
and performs necessary session-related operations within the web applications.

4.7 Security Testing
Regular security testing, including vulnerability scanning, penetration testing, and code
reviews, identifies and addresses potential weaknesses in the application. This proactive
approach enables patching vulnerabilities before they can be exploited. Cloud-Vitae's security
was tested throughout all stages of development using multiple tools provided by Symfony.
Security testing often includes scanning the application for known vulnerabilities and
weaknesses. This can be done using automated vulnerability scanning tools that check for
common security issues such as outdated libraries, misconfigurations, SQL injection, cross-
site scripting (XSS), and more. Symfony provides tools like SensioLabs Security Advisories and
SymfonyInsight to assist with vulnerability scanning.

Conducting a thorough review of the application's source code is another essential aspect of
security testing. This involves analyzing the codebase to identify insecure coding practices,
potential vulnerabilities, and areas where security improvements can be made. Code review
helps ensure that security best practices, such as input validation, output encoding, proper
authentication, and secure data handling, are implemented correctly.

Penetration testing, also known as ethical hacking, involves actively simulating attacks on the
application to uncover potential vulnerabilities. Skilled security professionals perform manual
tests to identify weaknesses in the system's architecture, authentication mechanisms, input
validation, and other security controls. The goal is to assess how effectively the application
can resist real-world attacks. This was done manually by the developer.

Security testing should evaluate the effectiveness of the authentication and authorization
mechanisms implemented in the Symfony application. This includes verifying the strength of
password policies, testing multi-factor authentication (MFA), evaluating access controls, and
ensuring that only authorized users have appropriate access to sensitive resources.

The session management process should be thoroughly tested to ensure that session data is
adequately protected. This includes verifying session ID generation, checking for session
fixation vulnerabilities, and ensuring that session data is properly encrypted and stored
securely.

Reviewing the application's configuration files and settings is crucial to identify any security
weaknesses or misconfigurations. This includes checking for insecure default settings,
validating encryption and hashing algorithms, verifying secure communication protocols (I.e.
HTTPS), and reviewing permissions and access controls.

Security testing should examine how the application handles errors and exceptions. This
includes verifying that error messages do not reveal sensitive information, validating that

46

exceptions are properly caught and logged, and ensuring that error handling does not expose
potential vulnerabilities.

By conducting thorough security testing on the application using Symfony’s tools, we can
identify and address potential security vulnerabilities, enhance the application's resilience to
attacks, and safeguard sensitive user data. It is an essential aspect of the software
development lifecycle to ensure the overall security and integrity of Symfony applications.
The steps mentioned above are the ones taken to ensure security for Cloud-Vitae.

4.8 Error Handling and Logging
Proper error handling and logging mechanisms help identify and troubleshoot security issues
or unauthorized activities. Detailed logging provides valuable information for forensic analysis
and auditing. These two are crucial components in Cloud-Vitae for managing and resolving
errors and exceptions that occur within the application. These processes involve capturing,
recording, and dealing with errors to ensure proper diagnosis and resolution of issues.

Symfony provides a robust mechanism that allows developers to define how different types
of errors and exceptions are handled. This includes PHP errors, application-specific
exceptions, and HTTP-related errors. Developers can customize error pages to provide a
consistent and user-friendly experience when errors occur. They can also configure exception
handling, specifying actions such as redirecting to specific error pages, displaying custom
error messages, or logging exceptions for further analysis. Additionally, Symfony's event
system allows developers to register error event listeners, enabling additional actions like
sending notifications, performing logging, or triggering specific error recovery processes. For
example, Cloud-Vitae implements custom error and warning pages. One of the most
frequently seen ones is the access denied based on unverified email address. When the
controller denied access to the user based on this condition, it does not render a generic error
page, but a custom one that explains why the user is seeing this, how to fix it and the option
to re-send the verification email.

Logging, on the other hand, involves recording and storing relevant information about the
application's runtime behavior, including errors, exceptions, warnings, and other loggable
events. Symfony offers a powerful logging component that supports different log levels, such
as debug, info, warning, error, and critical. Developers can specify the severity of logged
events to filter and prioritize information based on importance. Symfony's logging system also
supports the concept of log channels, allowing developers to categorize log entries based on
different areas or components of the application. This helps organize and differentiate logs
for easier troubleshooting. Symfony provides various log handlers that determine where log
entries should be stored or sent, such as writing logs to files, sending them to external services
or databases, or even delivering logs through email or other notification channels.
Additionally, Symfony's logging system enables developers to include contextual information
in log entries, such as the current user, request details, environment variables, or any other
relevant data, facilitating error understanding and diagnosis. In the case of Cloud-Vitae, even
though logging is such a useful tool, it was completely unnecessary since general debugging
was enough to solve any unexpected development problems. However, for the production
environment of Cloud-Vitae, Symfony is set up to save general purpose logs in a dedicated
application file on the hosting server, just as a backup in case other errors unexpectedly occur
after launch.

47

4.9 Secure Configuration
Ensuring proper configuration of the web server, application framework, and other
components with secure settings is vital. This includes disabling unnecessary services,
applying security patches and updates, and implementing secure configurations
recommended by the framework or technology used. Symfony offers a comprehensive set of
tools and guidelines to ensure the secure configuration of Cloud-Vitae. Secure configuration
involves establishing application settings and options in a manner that minimizes potential
security risks and aligns with recommended security practices.

Cloud-Vitae advocates for the use of environment variables or specialized secret management
tools to store sensitive information like database credentials, API keys, and encryption keys.
This practice prevents accidental exposure of sensitive data in version control systems. The
environment file is located under “app/.env” in the application. Symfony recommends
hardening the configuration files by disabling unnecessary features and services that are not
essential for the application's operation. By reducing the attack surface, potential security
risks are minimized.

In production environments, Symfony advises disabling the debug mode to avoid exposing
sensitive information. Proper error handling ensures that error messages and stack traces are
not divulged to end-users, which could potentially reveal internal application details, and
Cloud-Vitae falls between these guidelines. Symfony provides configuration options and
libraries for secure encryption and hashing purposes (see chapter 4.3.1). This enables
developers to encrypt sensitive data or hash passwords using strong cryptographic
algorithms. Secure storage of encryption keys and hashing salts is also emphasized.

Symfony also facilitates the configuration of secure communication protocols such as HTTPS
(HTTP over SSL/TLS) to encrypt data transmitted between the application and the client's
browser. This ensures the confidentiality and integrity of sensitive information during
transmission (chapter 4.5). Symfony's security component also enables developers to define
access control rules based on user roles and permissions. This allows for precise restrictions
on routes, controllers, or actions, preventing unauthorized access to sensitive parts of the
application (chapter 4.2.1).

Symfony encourages the use of trusted and regularly maintained libraries and components.
Keeping dependencies up to date with the latest secure versions helps mitigate potential
vulnerabilities and ensures the application benefits from security patches. Cloud-Vitae is
developed with this idea in mind, as almost all the implementations that corresponded to
older versions of Symfony and are now considered deprecated have been completely
replaced over time.

By adhering to Symfony's recommended practices for secure configuration, Cloud-Vitae
significantly reduced the risk of security breaches and enhanced the overall security posture
of the application. Staying informed about security best practices, staying up to date with
security updates, and consistently applying secure configuration measures throughout the
application's lifecycle are crucial for maintaining a secure Symfony application.

4.10 User Education
Educating users about best practices for strong passwords, avoiding phishing attempts, and
being cautious about sharing personal information significantly enhances overall application

48

security. Besides providing ways in which users can enhance their own security using the
application, it is mandatory to provide the notices specified by law, such as the terms and
conditions of usage or the privacy policy.

4.10.1 Guiding the user
Guiding users in Cloud-Vitae refers to the process of providing information, guidance, and
training to users to help them understand and use the application effectively, safely, and in
line with best practices. The goal of user education is to empower users with the knowledge
and skills they need to navigate the application, make informed decisions, and engage with
its features and functionalities. In a web application, user education plays a crucial role in
enhancing the user experience, promoting engagement, and ensuring usability and security.

When users first access the application, onboarding processes can help familiarize them with
its features, settings, and functionalities. User documentation, including tutorials, guides,
FAQs, and tooltips, provides detailed instructions on performing tasks and navigating
different sections of the application. For example, in Cloud-Vitae on the details edit page
(specifically the form in which the user inputs their personal data, work experience and so
on), the fields that are not easy to understand or that may create confusion for the user have
an extra label that contains useful information on what is the best way to complete that field
(I.e. Salary for a particular position, it refers to amount per month, currency should be
specified and it is not mandatory, meaning “confidential” is a valid answer as well). The design
of the user interface is intuitive and friendly, providing clear instructions and visual cues. Well-
designed interfaces guide users through workflows, making it easier for them to interact with
the application and achieve their goals.

Informative error messages are essential for guiding users when they encounter issues or
mistakes. User-friendly error messages offer actionable guidance to resolve problems or
suggest alternative actions. Feedback mechanisms, such as success messages and progress
indicators, keep users informed about the outcome of their actions and maintain
engagement. Cloud-Vitae implements a custom error message system that respects these
criteria and has already been discussed (chapter 4.8). Regularly informing users about
updates, new features, and improvements keeps them engaged and aware of the
application's capabilities. This can be achieved through release notes, changelogs, email
notifications, or in-app announcements. This is of course cannot be yet achieved by the
application since it is on its first production version, but it is a significant piece of the future
implementations plan.

Prioritizing user education empowers users to maximize the application's features, enhances
their experience, reduces errors, and improves overall usability and security. It fosters a
positive and productive user experience, leading to increased engagement and satisfaction.

4.10.2 Mandatory Notices
Legal compliance and protection of user rights and privacy are crucial in web applications. To
meet these requirements, certain mandatory documentation is necessary. The specific
obligations may differ based on the application's nature and the jurisdiction involved.

4.10.2.1 Terms and Conditions of Usage
The terms and conditions of usage define the rules, rights, and responsibilities governing the
use of Cloud-Vitae. They cover aspects like user obligations, intellectual property rights,

49

liability disclaimers, applicable laws, and dispute resolution mechanisms. They are created in
such a way to strictly follow the GDPR guidelines and can be found under /legal.

It's important to recognize that the examples bellow are not exhaustive, and additional legal
requirements may apply depending on the jurisdiction and specific characteristics of the web
application. Consulting legal professionals or experts knowledgeable in applicable laws and
regulations is necessary to ensure compliance. Cloud-Vitae took all the possible steps to
follow regulations and treat this subject accordingly with its limited budget, but it is not
guaranteed that all the information included as disclaimers for the users are enough to meet
this scope.

4.10.2.2 Privacy and Cookie Policies
A legally binding document, the Privacy Policy outlines how the web application collects, uses,
stores, and safeguards user data. It informs users about the types of data collected, purposes
of data usage, potential sharing with third parties, and measures taken to ensure data security
and compliance with privacy laws.

If the web application employs cookies or similar tracking technologies, a Cookies Policy is
necessary. Symfony uses cookies by default, so it is mandatory that they are clearly reported
in Cloud-Vitae's documentation. This policy informs users about the types of cookies used,
their purposes, how they are utilized, and options for managing cookie preferences. Cloud-
Vitae does not have an option to disable cookies as all the cookies used are essential for the
application to function properly. Users agree to the Privacy and Cookie policies by using the
website, and consent to this when registering an account.

4.10.2.3 Data Protection and GDPR Compliance
If the web application collects and processes personal data of users in the European Union
(which is the case for Cloud-Vitae), adhering to the General Data Protection Regulation
(GDPR) is mandatory. Compliance may entail additional documentation, such as a Data
Processing Agreement (DPA) for data processors and mechanisms to obtain user consent.
Cloud-Vitae's DPA is contained within its Privacy policy and Terms and Conditions of usage,
and users must agree to it before creating an account on the platform.

5. Running Cloud-Vitae on a Local Environment
Running a web application on a local environment provides several advantages that simplify
the development process compared to running it on a remote or production environment.
For the purpose of this paper, running Cloud-Vitae on a local environment is the most
effective way, since setting up a local environment is typically faster and more straightforward
than configuring a remote or production environment. Anyone can easily install a local server,
database, and other necessary software, enabling them to start testing the application
immediately.

Running a web application locally also ensures isolation from the external network and
potential security risks. This reduces the chances of unauthorized access or malicious attacks
during the development and testing phases. Furthermore, utilizing a local environment
eliminates the need for additional resources and infrastructure costs associated with running
the application on a remote or production server. This is particularly advantageous for

50

individual developers or small teams with limited budgets which is the exact case of Cloud-
Vitae.

5.1 Creating the Local Environment
To create a local environment, we will need to install a few pieces of software necessary for
the project to work optimally.

5.1.1 Setting up Ubuntu Linux
Firstly, we will need Ubuntu Linux, which is a widely used operating system that is built on
the Linux kernel and is known for its user-friendly interface, stability, and strong community
support. It offers a wide range of software packages for various purposes. It can be used
either via a virtual machine or a main operating system (OS).

5.1.1.1 Ubuntu Linux with a Virtual Machine
Installing Ubuntu Linux via a Virtual Machine makes for a more straightforward and easier
process and allows users to also keep their original operating system accessible at any time.
This method is preferred, and for Cloud-Vitae it is recommended to use VM Ware Workstation
for the virtual machine, since it is a free to use software solution and provides a secure and
isolated environment for running Ubuntu.

Visit the official VMware website (https://www.vmware.com/) and download the
appropriate version of VMware Workstation for your operating system. Ensure compatibility
with your system. Visit the official VMware website (https://www.vmware.com/) and
download the appropriate version of VMware Workstation for your operating system. Ensure
compatibility with your system. Install VMware Workstation on your computer and open the
program.

Create a new virtual machine: Click on the "Create a New Virtual Machine" option in VMware
Workstation to start the new virtual machine creation wizard. In the wizard, choose the
"Installer disc image file (iso)" option and navigate to the location where you saved the
Ubuntu ISO file. Select "Linux" as the guest operating system and choose the version of
Ubuntu you downloaded. Set the name and location for the virtual machine files, allocate the
desired amount of memory (RAM) and disk space, and customize other settings according to
your needs.

Once the virtual machine is created, select it from the VMware Workstation library and click
on the "Power on this virtual machine" option. The virtual machine will boot from the Ubuntu
ISO file. Follow the on-screen instructions to install Ubuntu within the virtual machine. You
can select language preferences, configure disk partitions, set up a user account, and choose
optional software packages during the installation process. After the installation is complete,
Ubuntu will be installed within the virtual machine. You can log in and start using Ubuntu.

5.1.1.2 Ubuntu Linux as a Default OS
Visit the official Ubuntu website at https://ubuntu.com/ and download the ISO image of the
desired Ubuntu version. Make sure to choose the appropriate version based on your system
architecture (32-bit or 64-bit). Once the ISO file is downloaded, you need to create a bootable
USB drive or burn it onto a DVD. You may require third-party software like Rufus (for USB) or
ImgBurn (for DVD) to perform this step. Insert the bootable USB or DVD into your computer

https://www.vmware.com/

51

and restart it. Access the BIOS or UEFI settings to adjust the boot order, giving priority to the
USB or DVD drive.

After rebooting, the Ubuntu installer will load. Choose your preferred language and select the
"Install Ubuntu" option. Alternatively, you can try Ubuntu without installing it to test it before
proceeding. Follow the on-screen instructions to configure settings such as language,
keyboard layout, network configurations, and disk partitioning. Depending on your
preferences, you can install Ubuntu alongside another operating system or wipe the disk and
install Ubuntu as the sole OS. Provide a username, password, and computer name for your
Ubuntu system. This account will have administrative privileges.

The installer will copy the necessary files and install Ubuntu on your system. This process may
take some time, so it's important to be patient. Once the installation is complete, you will be
prompted to restart your computer. After rebooting, Ubuntu Linux will load, and you can
begin exploring and using the operating system. It's important to note that the installation
process may vary slightly depending on the specific version of Ubuntu and the hardware
configuration of your computer. For more detailed installation instructions and
troubleshooting guidance tailored to your situation, it is recommended to consult the official
Ubuntu documentation or seek assistance from the Ubuntu community resources.

5.1.2 Setting up Docker and Docker Compose Plugin
After installing Ubuntu Linux either via a virtual machine or as a main operating system, we
have to set up a few tools in order to run the Cloud-Vitae project properly. Installing Docker
is a simple process, and more information can be found in Docker’s official documentation
(https://docs.docker.com/engine/install/ubuntu/).

To start, open a terminal instance in Ubuntu Linux. To install Docker, you will need to copy
and paste the following commands one by one. Please note that in this terminal, instead of
the normal paste shortcut (CTRL+V) it is better to use CTRL+SHIFT+V.

First, we need to update the apt package index by running “sudo apt-get update”, and then
we can install the latest docker version by running “sudo apt-get install docker-ce docker-ce-
cli containerd.io docker-buildx-plugin docker-compose-plugin” in the terminal. After that, a
system restart is recommended.

The second step is installing the Docker Compose Plugin, but first we need to update the apt
package index again by running “sudo apt-get update”, and then run “sudo apt-get install
docker-compose-plugin”. To check if everything is working properly, we can run “docker” for
Docker and it should return a list of possible Docker commands alongside the installed Docker
version, and “docker compose version” which should return the Docker Compose Plugin
version. If both of these return what they should, Docker was properly installed.

5.1.3 Setting up GIT
Installing GIT on Ubuntu Linux is a very simple process. First, we need to update the apt
package index by running “sudo apt-get update”, and then we have to run “sudo apt-get
install git”. If we now run “git --version” and it return our current version of GIT, it is installed
correctly.

https://docs.docker.com/engine/install/ubuntu/

52

5.1.4 Setting up PHP Storm
PHP Storm can be found in the Snap Store of Ubuntu Linux, under the development section.
We just have to click download and install, and we will be notified when the process is
finished, and PHP Storm is ready to use.

5.2 Cloning the Repository
After the PHP Storm installation is finished, we will open the IDE. We will be prompted by a
menu in which we have to open or create a project. Since Cloud-Vitae is stored online on
GitHub’s servers, we will have to clone it from VCS instead of copying the files manually.

5.2.1 Cloning from VCS in PHP Storm
On this menu, we will click on “Get from VCS”. Another menu will appear, in which we have
to input the project url (https://github.com/AN0R31/Cloud-Vitae), and select the directory
under which the project will be created, and then click on “Clone”. Cloning the repository
might take a couple of minutes, and it also may require you to authenticate into a GitHub
account that has access to the repository. If you received the project files in another way, you
can just right-click on the directory containing these files and select “Open with another
application”, and then select PHP Storm. This will also create a clone of Cloud-Vitae.

5.2.2 Validating the project files
After successfully cloning the project, it is recommended but not mandatory to validate the
files. To do this, you can merge the main branch of Cloud-Vitae's repository into your local
branch and make sure GIT returns “all files are up to date” (the best way to do this is to open
PHP Storm’s terminal and run “git init” and then run “git remote add origin” followed by the
provided repository link), or if you do not have access to merge you can check that the
directory structure of the project matches the one bellow.

5.3 Setting up the project
All the previous steps should have constructed the environment needed to run Cloud-Vitae if
executed correctly. Now we can move forward to warming up the project and eventually
running it.

5.3.1 Building the Docker containers
If Docker was correctly installed, after running “docker ps” in PHP Storm’s terminal it should
return an empty list of containers. We first need to build the containers, and then run them.
To achieve this, run “docker compose build --no-cache”. This process could take up to one
hour but has to be executed only once.

5.3.2 Running the Docker containers
After Docker finished building the containers, you will press CTRL+C in the terminal to kill
them. Run “docker compose down” to terminate any remaining processes, and then “docker
compose up” to start the containers.

5.3.3 Starting a Docker service in PHP Storm
After running the containers, we will click on the “Services” tab in PHP Storm next to the
“Terminal” tab (on the bottom left side). Here we will click the plus sign and select “Add a
Docker service”. Wait a few seconds for the configuration to load and click on “Add”. The
Docker service should now appear on the left side of the services tab.

https://github.com/AN0R31/Cloud-Vitae

53

5.3.4 Installing NPM and Watch on the service
After adding the Docker service, in the “Services” tab double click on it. It should have multiple
sub-menus, one corresponding to each Docker container. Click on the “php” container, and
in the menu that open on the right side click on “Terminal”. This will open a service terminal,
which is used to operate directly on the project and is very useful for specific components
such as Symfony’s CLI and NPM. Here, run “npm install” and after it is finished run “npm run
watch”. This will start the Watch service, and it will refresh and compile all the assets
efficiently.

5.3.5 Installing Composer Dependencies
Open another service terminal by clicking on “Terminal”. Here run “composer update” to
update the local dependencies and “composer install” to make sure they have all been
installed. If there are red errors in the terminal after it executes, it means the dependencies
were not correctly installed and Cloud-Vitae will throw errors and not run properly.

5.3.6 Running the database migrations
In the same terminal, run “php bin/console doctrine:migrations:migrate”. If you get a green
message saying “All migrations executed successfully”, this process is finished. If you get a
SQL error about the database not existing, go to “localhost:8081” in any browser and
manually create a MySQL database named “cloud-vitae” and then run the migrate command
again. If localhost is giving you access denied when accessing from a web browser, restart the
Docker container or ultimately the computer.

5.4 Getting started
To access Cloud-Vitae, open any web browser and type “localhost:8080” in the top search
bar. This link is the entry point to the application.

6. Application Guide
The design and general user walkthrough for Cloud-Vitae is very friendly and easy to

understand. This chapter represents a quick overview on how to use the application and

specific details and particularities on its functionalities.

6.1 Landing Page
The landing page of Cloud-Vitae is the entry point to the application and can be reached by
accessing “localhost:8080” while not authenticated. It contains general information on what
the application does, what its purpose is and how to use it.

54

6.2 Legal Notices
At the bottom of the landing page, there is a button to create an account entitled “Get your
CV now!”. When clicked, the user must select a registration method, and if email address is
chosen, then it will redirect to the registration route which can be reached by accessing
“localhost:8080/register” while not authenticated. Here, the user can read Cloud-Vitae's legal
notices by clicking on “Terms and conditions”.

A more detailed overview of the legal notices can be found in chapter 4.10.2. This page
contains Cloud-Vitae's terms and conditions of usage (which can also be accessed at
“localhost:8080/legal”), and a link to the Privacy policy (also accessible from
“localhost:8080/legal/privacy”).

55

6.3 Authentication and Registration
When clicking the “Get your CV now!” button at the bottom of the landing page, the user
has to choose between authentication with email address or with LinkedIn.

6.3.1 Registering with LinkedIn
If the user chooses authentication with LinkedIn, he will be redirected to the LinkedIn API
authentication page. Here the user must input his LinkedIn login information and click on
“Sign in”.

56

LinkedIn will then show the user the information they will share with Cloud-Vitae, and the
user must agree in order to proceed.

After that, the user is redirected back along with the information provided by LinkedIn’s API,
and Cloud-Vitae registers an account and authenticates the user automatically.

6.3.2 Authentication with LinkedIn
To authenticate with LinkedIn in an already existing Cloud-Vitae account, the user must follow
the same steps as in registering an account with LinkedIn (chapter 6.3.1). The only difference
is that the user will not have to review and agree again to the share of data between the two

57

applications, and if the LinkedIn authentication is still valid in this session, the user will not
have to input his LinkedIn credential again.

6.3.3 Registering with Email Address
If the user chooses to authenticate with an email address, he will be redirected to the register
page, which can be reached by accessing “localhost:8080/register” while not authenticated.
Here is located a form in which the user has to input a valid email address, password and
agree to the terms and conditions. After clicking “Get your CV now!”, if the controller decides
the form is validly completed, it will create an account for the user and authenticate him
automatically.

6.3.4 Authenticating with Email Address
To authenticate in Cloud-Vitae with an already existing email-based account, a user must
reach the login page by clicking on “Sign in” from the registration page. It can also be reached
by accessing “localhost:8080/login” while not authenticated.

58

Here the user must input their Cloud-Vitae credentials and click on “Login”. If the controller
validates these credentials, the user will be successfully authenticated.

6.4 Verifying the Email Address
After a user register for an account, whether it is via LinkedIn or by email address, he must
verify this email address. Cloud-Vitae sends an email to the associated email (for LinkedIn it
is provided by the API) which contains a link that the user must click on. He must also be
authenticated when following the link, otherwise the verifying process will not work.

59

Until the user does this, access will be denied to Cloud-Vitae's functionalities. The error page
rendered by the controller also allows the user to re-send the verification email, in case it was
lost or not received.

After a valid verification process, the user’s email address is flagged as verified by the
application and the user can freely enjoy all its functionalities. This process must be
completed only once per account.

6.5 Creation Page
After verifying the email address, the user is redirected automatically to the creation page.

60

 This page is composed by a detailed form in which the user must input mandatory personal
information such as first and last name, job title, a short description but also optional
information such as work experience and spoken languages.

To submit this form after completing it, there is a button at the bottom of the page entitled
“Generate!” which must be clicked. Until this form is submitted for the first time, the user will
be always redirected to the creation page since until this process is completed, there will not
be enough information to create a CV for the user.

61

6.6 CV Page
After correctly completing and submitting the creation page form, the user is redirected to
the CV page, where a default styling is applied. This is essentially the main page of the
application after the registration process is finished.

From this page the user can change the styling of the CV document, download it as a PDF, get
a cloud hosting link, download a QR code that redirects to the cloud hosting, change his
information and logout. It automatically renders a page based on the chosen design to
encompass all the information provided by the user in the most pleasant and easy to read
way possible.

6.6.1 Changing the Styling
To change the styling of your Cloud-Vitae, you have to click the “Changed theme” button. The
positioning and look of this button may differ from style to style, but it consistently has the
same name and is generally located in the top right corner of the page.

62

Once it is clicked, a pop-up containing all the possible themes will appear. From here, the user
can choose the desired theme, and can decide which fits best as each theme has a differently
styled button that best describes it.

6.6.2 Downloading a PDF Copy
To download your Cloud-Vitae as a PDF document, you have to click the “Download PDF”
button. The positioning and look of this button may differ from style to style, but it
consistently has the same name and is generally located in the top right corner of the page.
Once it is clicked, the PDF copy of you Cloud-Vitae will immediately start downloading.

6.6.3 Sharing a Cloud Hosting Link
To copy your Cloud-Vitae's cloud hosting link, you must press the “Copy Link” button. The
positioning and look of this button may differ from style to style, but it consistently has the
same name and is generally located in the top right corner of the page. Once this button is
clicked, the cloud link is copied to the clipboard automatically, and the user can paste it
wherever it is needed.

6.6.4 Sharing a QR Code Link
To download your Cloud-Vitae's QR Code, you must click the “Get QR” button. The positioning
and look of this button may differ from style to style, but it consistently has the same name
and is generally located in the top right corner of the page. Once clicked, a PDF document
containing the QR Code will immediately start downloading. The user can either use it as it
comes or take the picture and inserted wherever it is needed (i.e. personal blog, social media
description, email template).

6.6.5 Changing User Information
To change your Cloud-Vitae's information by clicking the “Edit Profile” button. The positioning
and look of this button may differ from style to style, but it consistently has the same name
and is generally located in the top right corner of the page. After clicking this button, the user

63

will be redirected to the creation page, except that this time the form is already filled with
the previously imputed information. This way the user can in more easily edit his data in an
all-encompassing page.

6.6.6 Changing the Profile Picture
You can change your profile picture in Cloud-Vitae by clicking the crayon icon in the top left
corner of your already existing profile picture. The positioning and look of this button is always
the same regardless of the chosen style. Upon clicking this button, the media input
immediately opens, and the user can browse his personal files and choose a new image. After
selecting the new profile picture and clicking on “Select”, the application automatically
replaces the old profile picture with the newly selected one.

6.6.7 Logging out
If the user decides to log out of his account, he can easily do so by clicking the “Logout”
button. The positioning and look of this button may differ from style to style, but it
consistently has the same name and is generally located in the top right corner of the page.
Upon clicking this button, the user will be logged out and redirected to the landing page.

7. Development directions and Conclusion
The application addresses the complexities and limitations associated with creating, sharing,
and editing CV documents. It achieves this by providing a user-friendly interface that
automates layout and design, eliminating the need for specialized software or design skills.
Cloud-Vitae's purpose is to achieve this on a continuous manner. To do this, the application
must be in a constant state of developing and deploying new functionalities, improvements
and features.

One of the main areas in which the application is under-developed at the moment is the
collection of CV themes. It is essential that the users have enough stylings to choose from,
and this demand will only grow as the user base extends. Cloud-Vitae's plan is to exponentially
increase its selection of CV themes to become large enough so that all users feel like they can
choose a preferred theme while also remaining unique.

The second domain in which Cloud-Vitae must progress is the number of supported
authentication methods and platforms. To reach the largest user base possible the application
must support authentication methods with as many platforms as possible to remain an
attractive solution for new users on the market. The next targeted platforms to integrate are
Google and Facebook, which are commonly used in web applications in this scope and can
bring a great number of new users to Cloud-Vitae.

Another area of possible new horizons for Cloud-Vitae is the CV extraction functionality. This
implies that when a user registers for an account, he can upload his old CV document and the
application will automatically extract and group all the information, without needing the user
to input anything else in the application. Similar solutions already exist, but they have proven
extremely unreliable over the years, as the way CV documents are created differs greatly and
therefore applications have a hard time extracting the information based on patterns alone.
Cloud-Vitae aims to revolutionize this process in the future by integrating an external API
based AI solution such as Chat GPT to extract and return the information from the CV

64

uploaded to the application, but at the moment these external APIs are paid, and the initial
development budget of Cloud-Vitae was not enough to cover such expenses.

The last major way in which Cloud-Vitae could evolve even further is developing its own API
intended for the integration and use by other applications and developers. Especially after
the extraction functionality is implemented, the application will be such a demanded solution
that aiming for a proprietary API which will allow other applications to use its unique features
is the best course of action. This API will encompass all of Cloud-Vitae's functionalities and
will be a “pay per request” type of interface, which will also constitute the applications main
source of income and monetization.

Cloud-Vitae endeavors to establish standard practices within the realm of online employment
by promoting the adoption of novel approaches, and it is on the right path to achieve this
goal. Envisioning the current state of the application combined with its development
direction, Cloud-Vitae's aim to revolutionize the employment world with its unique features
becomes more and more tangible.

65

Bibliography and Webography

1. “The lean startup” by Eric Ries, 2011

2. “Agile Software Development, Principles, Patterns, and Practices” by Robert C. Martin, 2002

3. “Manifesto for Agile Software Development”, from https://agilemanifesto.org/

4. “What is a programming language?” https://codeinstitute.net/global/blog/what-is-a-
programming-language

5. Symfony documentation, from https://symfony.com/doc/current/index.html

6. Composer documentation, from https://getcomposer.org/doc/01-basic-usage.md

7. Doctrine in Symfony, from https://symfony.com/doc/current/doctrine.html

8. Symfony’s Webpack Encore, from https://symfony.com/doc/current/frontend.html

9. Twig documentation, from https://twig.symfony.com/

10. PHP Storm, from https://www.jetbrains.com/phpstorm/

11. “What is MySQL?”, from https://www.oracle.com/mysql/what-is-mysql/

12. “Version control with GIT” by Jon Loeliger, from https://www.foo.be/cours/dess-
20122013/b/OReilly%20Version%20Control%20with%20GIT.pdf

13. “Object-Oriented PHP”, by Peter Lavin from
https://doc.lagout.org/programmation/tech_web/No.Starch.Press.Object.Oriented.PHP.Concepts.Te
chniques.and.Code.210pp.6-2006.pdf

14. Docker documentation, from https://docs.docker.com/get-started/overview/

15. NGINX documentation, from https://docs.nginx.com/nginx/admin-guide/web-server/

https://agilemanifesto.org/
https://codeinstitute.net/global/blog/what-is-a-programming-language/#:~:text=A%20programming%20language%20is%20a,a%20definite%20programming%20language%20syntax.
https://codeinstitute.net/global/blog/what-is-a-programming-language/#:~:text=A%20programming%20language%20is%20a,a%20definite%20programming%20language%20syntax.
https://symfony.com/doc/current/index.html
https://getcomposer.org/doc/01-basic-usage.md
https://symfony.com/doc/current/doctrine.html
https://symfony.com/doc/current/frontend.html
https://twig.symfony.com/
https://www.jetbrains.com/phpstorm/
https://www.oracle.com/mysql/what-is-mysql/
https://doc.lagout.org/programmation/tech_web/No.Starch.Press.Object.Oriented.PHP.Concepts.Techniques.and.Code.210pp.6-2006.pdf
https://doc.lagout.org/programmation/tech_web/No.Starch.Press.Object.Oriented.PHP.Concepts.Techniques.and.Code.210pp.6-2006.pdf
https://docs.docker.com/get-started/overview/
https://docs.nginx.com/nginx/admin-guide/web-server/

	Introduction
	Shortly describing the theme
	Reasoning behind this theme choice

	Document structure
	1. Addressing the topic
	1.1 The Purpose of this Thesis
	1.2 Alternative approaches in this field
	1.3 Designing a web application
	1.3.1 The specifications of a web application
	1.3.2.1 Identifying the Target Audience
	1.3.2.2 Determining the Base Functionalities
	1.3.2.3 Selecting the Appropriate Application Type
	1.3.2.4 Establishing the overall Look and Design

	1.3.3 Project planning
	1.3.3.1 Agile methodologies
	1.3.3.2 Client communication

	2. Technology and Development Stack
	2.1 PHP as a Programming Language
	2.2 Symfony Framework and it’s Components
	2.2.1 Dependency management with Composer
	2.2.2 Doctrine and Object Relational Mapping
	2.2.3 Asset Management and Webpack Encore
	2.2.4 HTML and Twig Render Engine
	2.2.5 Symfony’s CLI

	2.3 PHP Storm as an Integrated Development Environment
	2.4 Running a Web Server with NGINX
	2.5 Application Management with Docker
	2.6 Database management with MySQL
	2.7 CSS and Styling Components
	2.8 JavaScript and Asynchronous Server Communication with AXIOS
	2.9 Software Versioning with GitHub

	3. Architectural Patterns, OOP and Entity Management
	3.1 Symfony 6 Framework Architecture
	3.2 Model View Controller Architecture
	3.2.1 The Model component
	3.2.2 The View component
	3.2.3 The Controller component

	3.3 Object Oriented Programming
	3.3.1 Object Oriented Programming in PHP
	3.3.2 Object Oriented Programming in Symfony and MVC architectures

	3.4 Entity Management
	3.4.1 Entity Relationship Diagrams
	3.4.2 Cloud-Vitae's ERD and Entity Schema

	4. Application Security
	4.1 Authentication
	4.1.1 Email Registration and Authentication
	4.1.2 LinkedIn Registration and Authentication
	4.1.2.1 Application Programming Interface
	4.1.2.2 LinkedIn’s API
	4.1.2.3 Cloud-Vitae's API Implementation

	4.2 Authorization
	4.2.1 The User Role System
	4.2.1 The Email Verification System

	4.3 Data Encryption
	4.3.1 Password Hashing and Verification

	4.4 Input Validation
	4.4.1 Raw Data Validation
	4.4.2 CSRF Tokens

	4.5 Secure Communication
	4.6 Session Management
	4.7 Security Testing
	4.8 Error Handling and Logging
	4.9 Secure Configuration
	4.10 User Education
	4.10.1 Guiding the user
	4.10.2 Mandatory Notices
	4.10.2.1 Terms and Conditions of Usage
	4.10.2.2 Privacy and Cookie Policies
	4.10.2.3 Data Protection and GDPR Compliance

	5. Running Cloud-Vitae on a Local Environment
	5.1 Creating the Local Environment
	5.1.1 Setting up Ubuntu Linux
	5.1.1.1 Ubuntu Linux with a Virtual Machine
	5.1.1.2 Ubuntu Linux as a Default OS

	5.1.2 Setting up Docker and Docker Compose Plugin
	5.1.3 Setting up GIT
	5.1.4 Setting up PHP Storm

	5.2 Cloning the Repository
	5.2.1 Cloning from VCS in PHP Storm
	5.2.2 Validating the project files

	5.3 Setting up the project
	5.3.1 Building the Docker containers
	5.3.2 Running the Docker containers
	5.3.3 Starting a Docker service in PHP Storm
	5.3.4 Installing NPM and Watch on the service
	5.3.5 Installing Composer Dependencies
	5.3.6 Running the database migrations

	5.4 Getting started

	6. Application Guide
	6.1 Landing Page
	6.2 Legal Notices
	6.3 Authentication and Registration
	6.3.1 Registering with LinkedIn
	6.3.2 Authentication with LinkedIn
	6.3.3 Registering with Email Address
	6.3.4 Authenticating with Email Address

	6.4 Verifying the Email Address
	6.5 Creation Page
	6.6 CV Page
	6.6.1 Changing the Styling
	6.6.2 Downloading a PDF Copy
	6.6.3 Sharing a Cloud Hosting Link
	6.6.4 Sharing a QR Code Link
	6.6.5 Changing User Information
	6.6.6 Changing the Profile Picture
	6.6.7 Logging out

	7. Development directions and Conclusion
	Bibliography and Webography

