PERFORMANCE EVALUATION
AP| TESTING — Symfony 6.3.4 vs Heliodor 0.1.4

The purpose of this paper is to analyze and compare the performance of Heliodor and Symfony, shedding light on
their respective efficiencies in handling various APl requests and workloads and highlight why it might be a good idea
to switch to a separate external APl Handler Architecture.

Performance testing in this context is crucial as it directly impacts user satisfaction, scalability,
competitive positioning in the market but most importantly, resource efficiency. It ensures that your
infrastructure delivers efficient services, responsive web applications, enhancing overall experience
and optimizing development efforts.

In the field of software development, "separation of concerns" refers to the practice of dividing a program into distinct
sections, each addressing a separate concern or aspect of the application's functionality. However, this aspect seems
to be forgotten in the context of APl handling. To put our vision into perspective, we ask a simple question: Just like
we store data in a database, a separate source from our application, why would we use the exact same resource that,
for example, renders our front-end, to handle external APl requests to our application? This, after all, goes against
the essence of the separation of concerns.

Undoubtedly, the ease of development derived from having all tools within a single framework or system is
undeniable, and we do not intend to dispute that fact. Rather, we propose an argument that suggests perhaps this
very convenience might lead to efficiency leaks within architectures. Our aim is to delineate where it is most prudent
to balance ease of development against efficiency, and vice versa.

01
02
03

APl Testing

Production environment

STRESS

We have chosen to place this section of our tests at the
forefront, as ultimately, it holds the greatest
significance: actual performance when operating on a
live web server. While this approach may not yield the
most precise results in terms of "raw horsepower," it
undoubtedly offers the most accurate insight into real-
world performance expectations.

Stress testing

API stress testing involves evaluating an API's performance by subjecting it tc

PERSISTENCE

a high volume of concurrent requests or heavy loads to assess its stability and

responsiveness under such conditions. For this test, we aimed at two main
benchmarks: have the lowest failure percentage under extreme volumes,

REQUESTS / SECOND

while also maintaining the highest requests per second percentage possible.

Persistence testing

Persistence testing involves assessing how well an application or system
retains data integrity and consistency over time, ensuring that data is properly
stored, retrieved, and updated without loss or corruption. In an optimal
scenario, this test aims to observe the endpoint sustaining the maximum
requests per second rate with a flawless success record, over a prolonged

period.

RPS testing

Ideally, the goal of RPS (Requests Per Second) testing is to determine the
maximum throughput capacity of the endpoint while maintaining a zero
percent failure rate (or close to zero, just to see how far the framework can be
“overclocked” in extremely demanding scenarios). In terms of benchmarks,
this test represents an amalgamation of the strengths observed in the initial
two tests, offering a balanced perspective.

* The testing environment consists of a Linux Apache 2 shared hosting webserver. The setup includes a Symfony web app hosted on “our-test.com” and a

Heliodor application on “api.our-test.com”. Both endpoints ("/route/to/api") receive POST requests with the same bodies: “from="Apache+JMETER+-
+SYMFONY+TEST” or “from="Apache+JMETER+-+HELIODOR+TEST”. All tests were made using Apache JMeter 5.6.3 in random sequences. Symfony API process:
Try -> create TransactionEntity -> Persist -> respond 200, 'Transaction has been recorded successfully'; Catch Error -> respond 500, *ErrorMessage. Heliodor API
process: Try -> Insert into 'transaction’ -> respond 200, 'Transaction has been recorded successfully'; Catch Error -> respond 500, *ErrorMessage. Disturbance
Potential: Heliodor runs on subdomain, so redirects theoretically slower requests for its Endpoint. Observed Effects: All request averages have been faster for
Heliodor despite the potential disturbance. Interface Application (or main application) runs on Symfony and could potentially slow down the Endpoint in specific
scenarios. Testing Fairness: To ensure fairness, testing sequences were randomized, and server breaks were introduced.

APl Testing

Production environment

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Reguests/second) KB/second IN KB/second QUT Average Bytes Test duration No.Threads Ramp-up period (sec) Loop count Test goals: LOWEST FAIL RATE AT HIGHEST RPS
[SYMFONY] HTTPS Request 2400 466 54 2338 528.7929 59.33% 43.93190555 19.8870348 10.85426963 463.5429167 55 seconds 24 0.0001 100 TRPS: 240000
[HELIODOR] HTTPS Request 2400 98 62 681 581383 1.33% 211.2304172 72.31203793 53.2201637 350.5533333 11 seconds 24 0.0001 100 Samples: 2400

Total 4800 282 58 1509.5 293.4656 30.33 127.5811614 46.09953637 32.03721667 407.048125 1 minute 24 0.0001 100

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Reguests/second) KB/second IN KB/second QUT Average Bytes Test duration No.Threads Ramp-up period (sec) Loop count Test goals: LOWEST FAIL RATE AT HIGHEST RPS
[SYMFONY] HTTPS Request 600 340 105 1975 177.3475 0 17.28807699 6.28347313% 4.271370584 37218 34 seconds 6 01 100 TRPS: 60
[HELIODOR] HTTPS Request 600 93 62 9233 378.2358 0 31.35615365 10.66170466 7.900280899 348.18 19 seconds 6 0.1 100 Samples: 600

Total 1200 216.5 83.5 5604 277.7916 0 2432211532 8.472588901 6.085825742 300.18 1 minute (3 01 100

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Reguests/second) KB/second IN KB/second QUT Average Bytes Test duration No.Threads Ramp-up period (sec) Loop count Test goals: LOWEST FAIL RATE AT HIGHEST RPS
[SYMFONY] HTTPS Request 6000 494 57 3520 557.4286 59.41% 42.06541172 19.0354203% 10.39311442 463.38 1.5 minutes 24 0.25 250 TRPS: 96
[HELIODOR] HTTPS Request 6000 106 60 24201 584.5719 0.25% 135.4004468 46.06856957 34.1145657 348.4051667 44 seconds 24 0.25 250 Samples: 6000

Total 12000 300 58.5 13860.5 571.0003 25.83 88.73252927 3255199458 22.25384006 405.8925833 2.5 minutes 24 0.25 250

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Reguests/second) KB/second IN KB/second QUT Average Bytes Test duration No.Threads Ramp-up period (sec) Loop count Test goals: LOWEST FAIL RATE AT HIGHEST RPS
[SYMFONY] HTTPS Request 1600 215 57 1674 357.646 83.37% 101.6712207 4972308453 25.11994027 500.795 15 seconds 64 0.5 25 TRPS: 128
[HELIODOR] HTTPS Request 1600 142 55 6773 549.6284 48.81% 138.1692573 58.8001943 34.81217617 435.78 11 seconds 64 0.5 25 Samples: 1600

Total 3200 180.5 56 4223.5 453.6372 66.09 119.920239 54.26163961 29.96605822 468.2875 1 minute 64 0.5 25

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Reguests/second) KB/second IN KB/second QUT Average Bytes Test duration No.Threads Ramp-up period (sec) Loop count Test goals: LOWEST FAIL RATE AT HIGHEST RPS
[SYMFONY] HTTPS Request 8000 860 80 1595 131.8579 0.18% 18.45316356 6.716102313 4.559228888 372.688875 7.25 minutes 16 0.01 500 TRPS: 1600
[HELIODOR] HTTPS Request 3000 94 58 33182 715.0572 0.03% 109.8493691 37.328818%6 27.67683181 347.973875 1.25 minutes 16 0.01 500 Samples: 8000

Total 16000 477 69 17388.5 423.4576 0.105 64.15126631 22.02246064 16.11806035 360.331375 9 minutes 16 0.01 500

In stress testing scenarios, Heliodor consistently demonstrates superior performance when compared to Symfony. The average
response times for Heliodor are notably lower, with a maximum recorded time of 142 milliseconds, significantly contrasting with Symfony's
maximum of 860 milliseconds. In fact, Heliodors highest average (142 ms) is lower than Symfony’s lowest average (219 ms). Additionally, the
failure percentage for Heliodor ranges between a mere 0.03% to 48.81%, which is markedly lower than Symfony's 0.18% to 83.37%. As clearly
visible, the higher the TRPS (Theoretical/Forced Requests per Second), the more observable the fail rate difference is. For the first and most
stressful test, which tries to push a TRPS of 240000, Symfony fails over half the requests, while Heliodor achieves an astonishing under 1.5%
failure rate.

Moreover, Heliodor achieves higher Requests Per Second (RPS) values, ranging from 109.85 to 211.23, in comparison to Symfony's
18.45 to 101.67. These results collectively highlight Heliodor's efficiency in managing high-volume and concurrent requests, ensuring both
stability and responsiveness under stress. It is also worth noting, this is the only test in which Symfony manages to push over 20 RPS. This is
because this achieved value of 101.67 RPS comes with an 83.37% failure rate, which translates to 16-17 RPS for successful transactions.

Given these performance metrics, Heliodor emerges as the preferred choice for highly stressful scenarios, where fast throughput at
low failure rate is essential. Its consistently superior performance, with lower response times, minimal failure rates, and higher RPS values,
underscores its capability to handle intense loads effectively. This makes Heliodor the optimal solution when robustness and reliability under
stress are paramount considerations for an APl service.

Heliodor's superior performance in stress testing scenarios makes it ideal for high-traffic web applications, real-time data processing,
and APIs serving mobile apps. It is also well-suited for microservices architectures, financial transactions, and media streaming services,
ensuring stability, responsiveness, and efficiency under heavy loads. Its low response times, minimal failure rates, and high Requests Per Second
(RPS) make Heliodor a reliable choice for a variety of critical API use cases.

Label Mo. Samples Average (ms) Min (ms) Max (ms) Std. Dew. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Test duration
[SYMFONY] HTTPS Request 18600 475.8 24 3520 350.6146 40.46% 44.8819557 20.325902311 11.03958476 434.5173583 11 minutes
[HELIODOR] HTTPS Request 18600 106.6 33 33182 457.1263 10.08% 125.2011288 45.03426509 31.54481566 366.173475 3 minutes

Totals 37200 291.2 54.5 18351 403.8705 25.271 84.94154225 32.6816441 21.29220021 400.2479167 14 minutes

A P ‘ Te Sti n g PERSISTENCE TESTING

Production environment

Label No. Samples Average (ms) Min (ms) Max(ms) Std.Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No. Threads Ramp-up period (sec) Loop count Test goals: No fails at high RPS.
[SYMFONY] HTTPS Request 30000 650 83 3300 141.0098 0.05% 18.31819436 6.660803159 4.525882006 372.3436 27.25 minutes 12 0.2 2500 TRPS: 60
[HELIODOR] HTTPS Request 30000 81 58 5068 66.89929 0.01% 136.369835 46.32556984 34.358380608 347.8583333 3.5 minutes 12 0.2 2500 Samples: 30000

Total 60000 365.5 70.5 4184 103.9545 0.03 77.34401468 26.4931865 19.44234404 360.1009667 31 minutes 12 0.2 2500

Label Me. Samples Average (ms) Min (ms) Max (ms) 5td. Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration Ne. Threads Ramp-up period (sec) Loop count Test goals: No fails at high RPS
[SYMFONY] HTTPS Request 13000 1023 98 4353 230.7107 0% 17.46308014 6.351939593 4.314608667 372.465 17.25 minutes 13 0.1 1000 TRPS: 180
[HELIODOR] HTTPS Request 18000 93 58 8232 148.889 0.01% 158.5344372 53.85910768 39.94324687 347.8848333 1.9 minutes 18 0.1 1000 Samples: 18000

Total 36000 558 78 62925 2147998 0.005 87.99875867 30.10552364 22.12892777 360.1749167 15.2 minutes 13 0.1 1000

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No. Threads Ramp-up period (sec) Loop count Test goals: Mo fails at high RPS
[SYMFONY] HTTPS Request 6000 1148 105 4960 342.1462 0% 17.23162463 6.269013123 4.257422881 372.54 5.75 minutes 20 0.05 300 TRPS: 400
[HELIODOR] HTTPS Request 6000 92 59 1229 46.23157 0% 168.1237391 57.12704551 42.35930145 347.9466667 35 seconds 20 0.05 300 Samples: 6000

Total 12000 620 82 30945 194.1889 o 92.67768185 31.69802931 23.30836216 360.2433333 6.5 minutes 20 0.05 300

Label No. Samples Average (ms) Min (ms) Max (ms) Std.Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No. Threads Ramp-up period (sec) Loop count Test goals: No fails at high RPS
[SYMFONY] HTTPS Request 60000 1137 58 2810 292.3004 0.87% 17.5078457 6.391707546 4.325668909 373.8386 57 minutes 20 0.04 3000 TRPS: 500
[HELIODOR] HTTPS Request 60000 135 57 17935 3943169 0.01% 123.5410784 42102512 31.22734202 347.85055 8 minutes 20 0.04 3000 Samples: 60000

Total 120000 636 57.5 10372.5 343.3087 0.43665 70.72446206 24.24710978 17.77650547 360.844575 1.1 hours 20 0.04 3000

Label No. Samples Average {ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No.Threads Ramp-up peried (sec) Loop count Test goals: Low fails at overload RPS.
[SYMFONY] HTTPS Request 12000 915 3 4475 264.0793 0% 17.33813407 6.306150834 4.283738203 372.4448333 12 minutes 16 0.002 750 TRPS: 8000
[HELIODOR] HTTPS Request 12000 104 59 579 42.70079 0% 137.8328088 46.82620665 34.72740691 347.8855 1.5 minutes 16 0.002 750 Samples: 12000

Total 24000 508.5 62.5 2527 153.3501 0.0083 77.58547144 26.56617874 19.50557255 360.1651667 14 minutes 16 0.002 750

In the realm of persistence testing, Heliodor consistently exhibits superior performance metrics compared to Symfony across a range
of scenarios. The average response times for Heliodor remain notably lower, with a maximum recorded time of 135 milliseconds, which stands
in stark contrast to Symfony's peak of 1137 milliseconds. This significant difference underscores Heliodor's efficiency in persisting data while
maintaining swift response times.

Heliodor also maintains impressively low failure rates throughout the testing scenarios, ranging from a mere 0.01% to 0.44%. This
contrasts with Symfony's observed rates of 0.05% to 0.87%. These results demonstrate Heliodor's reliability and robustness in handling varying
loads and persisting data accurately over extended periods of time with no breaks.

Since this test mainly focuses on loads that are not necessarily overloading the system but take a long time to finish, the benchmark
“Test duration” perfectly embodies why having such an infrastructure would be highly beneficial. The largest test required each framework to
process 60000 requests. Symfony got through this load in no less than 57 minutes, while Heliodor finished the exact same load in just 8 minutes
at 0% fail rate. This trend has been persistent throughout all our testing. For example, test 3 requires a load of exactly 10% of the former,
respectively 6000 requests, which Symfony finishes in 5.75 minutes, and Heliodor finishes in 35 seconds, which gives us the exact expected
result, which is the same, but scaled down to 10%.

In conclusion, Heliodor emerges as the preferred solution for persistence testing scenarios where maintaining low response times,
minimal failure rates, and efficient data handling under varying loads are paramount. Its superior performance metrics position it as an optimal
choice for transactional systems, real-time data updates, data-intensive applications, and user profile management APls, ensuring reliability
and efficiency in persisting critical data.

Label No. Samples Average (ms) Min {ms) Max(ms) Std. Dew. Failed (%) RPS ([Requests/second) KBfsecond IN KB/second OUT Average Bytes Test duration
[SYMFONY] HTTPS Request 126000 974.6 58 4960 264.0453 0.18% 17.57177578 6.395922851 4.341464133 372.7264067 2 hours
[HELIODOR] HTTPS Request 126000 101 57 17935 139.8075 0.01% 144.9603757 45.24808834 36.52322067 347.8851767 16 minutes

Totals 252000 537.8 57.5 11447.5 201.9284 0.0959% 21.26607774 27.82200559 20.4323424 360.3057917 2.25 hours

APl Testing

Production environment

Label No. Samples Average (ms) Min (ms) Max (ms) Stc. Dew. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No.Threads Ramp-up period (sec) Loop count Test goals: HIGHEST RPS at 100% SAFETY
[SYMFONY] HTTPS Request 2000 423 150 1101 85.8606 0% 18.69685767 6.899224526 4.601170792 377.8606031 1.75 minutes 8 0.001 250 TRPS: 8000
[HELIODOR] HTTPS Request 2000 79 60 430 27.09268 0% 53.44047342 31.75540573 23.54262054 348.0465 21 seconds 8 0.001 250 Samples: 2000

Total 4000 251 105 795.5 56.47664 o 56.06866804 15.32931513 14.07189567 362.9535515 2 minutes E:d 0.001 250

Label No. Samples Average (ms) Min (ms) Max (ms) Std.Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduratien Ne. Threads Ramp-up period (sec) Loop count Test goals: HIGHEST RPS at 99% SAFETY
[SYMFONY] HTTPS Request 2000 949 135 3838 351.0366 0% 16.55163282 6.020317 4.089417093 372.459 2 minutes 16 0.001 125 TRPS: 16000
[HELIODOR] HTTPS Request 2000 105 63 454 3444173 0% 131.9435282 44.84546068 33.24358425 343.072 15 seconds. 16 0.001 1325 Samples: 2000

Total 4000 527 123 2146 192.7392 o 74.24758049 25.43483884 18.66650067 360.2655 2.25 minutes 16 0.001 125

Label No. Samples Average (ms) Min (ms) Max (ms) Std.Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No. Threads Ramp-up period (sec) Loop count Test goals: HIGHEST RPS at 99% SAFETY
[SYMFONY] HTTPS Request 1800 1013 107 2301 286.4147 0% 17.24848357 6.275146552 4.261588226 372.54 1.75 minutes 18 0.001 100 TRPS: 18000
[HELIODOR] HTTPS Request 1800 107 60 440 36.96016 0% 152.1041068 51.7183671 38.32310504 348.18 11 seconds 18 0.001 100 Samples: 1800

Total 3600 560 83.5 1370.5 161.6874 o 84.67629519 2899675683 21.29234663 360.36 2 minutes 18 0.001 100

Label No. Samples Average (ms) Min (ms) Max (ms) Std.Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration No. Threads Ramp-up period (sec) Loop count Test goals: HIGHEST RPS at 95% SAFETY
[SYMFONY] HTTPS Request 2000 1180 122 4248 391.2%6% 0% 16.73878292 6.089713076 4.135656328 37254 2 minutes 20 0.001 100 TRPS: 20000
[HELIODOR] HTTPS Request 2000 109 62 401 35.14368 0% 153.30365946 52.12625038 38.62534483 348.18 12 seconds 20 0.001 100 Samples: 2000

Total 4000 644.5 92 2324.5 213.2203 1] 85.02123877 258.10798173 21.38050063 360.36 2.25 minutes 20 0.001 100

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Testduration Neo. Threads Ramp-up period (sec) Loop count Test goals: HIGHEST RPS at 50% SAFETY
[SYMFONY] HTTPS Request 1650 1088 61 5235 632.5669 10.55% 18.18662787 6.90693596 4.493375831 388.8957576 1.5 minutes 22 0.001 75 TRPS: 22000
[HELIODOR] HTTPS Reguest 1650 106 58 300 32.08191 7.64% 166.3641863 58.80465914 41.91597663 361.9527273 10 seconds 22 0.001 75 Samples: 1650

Total 3300 597 60 2767.5 332.3244 S.090509 92.2754071 32.85579755 23.20467623 375.4242424 2 minutes 22 0.001 75

Heliodor demonstrates remarkable performance in Requests Per Second (RPS) testing scenarios, consistently outshining Symfony in
terms of response rates and reliability under varying loads.

[High RPS at 99% Safety]: In this test scenario, Heliodor achieves an impressive RPS of 131.94 with a minuscule average response time
of 105 milliseconds and a failure rate of 0%. This indicates Heliodor's capability to handle a substantial number of requests per second with
exceptional efficiency and reliability, making it suitable for high-traffic applications such as e-commerce platforms and real-time data processing
systems.

[High RPS at 95% Safety]: Even at a slightly lower safety threshold of 95%, Heliodor maintains a robust RPS of 153.30 with an average
response time of 109 milliseconds and a negligible failure rate. These results highlight Heliodor's ability to sustain high levels of performance
while ensuring a margin of safety, making it suitable for applications requiring consistent and reliable throughput, such as financial trading
platforms and online gaming APls.

[High RPS at 90% Safety]: With an RPS of 166.36 and an average response time of 106 milliseconds, Heliodor performs exceptionally
well even at a 90% safety threshold. Despite a modest failure rate of 7.64% (compared to Symfony’s being over the allowed 10%), Heliodor
showcases its capacity to handle intensive loads while maintaining acceptable levels of safety, making it a viable choice for applications
requiring rapid data processing and high availability, such as media streaming platforms and real-time messaging services.

In summary, Heliodor emerges as a standout performer in RPS testing, consistently delivering high RPS values with minimal response
times and negligible failure rates. Its ability to sustain exceptional performance across varying safety thresholds underscores its versatility and
reliability for applications demanding high throughput and responsiveness. Heliodor proves to be an optimal choice for a wide range of use
cases, including high-traffic web applications, real-time data processing systems, and critical APl endpoints requiring dependable and efficient
handling of requests.

Label No. Samples Average (ms) Min (ms) Max (ms) Std. Dev. Failed (%) RPS (Requests/second) KB/second IN KB/second OUT Average Bytes Test duration
[SYMFONY] HTTPS Request 9450 930.6 61 5235 3494351 2.11% 17.48447657 6.438267423 4.316241654 376.8590721 9 minutes
[HELIODOR] HTTPS Request 9450 101.2 =2 450 33.14403 1.53% 139.4311989 47.85162861 35.13012628 350.8862455 1 minutes

Totals 18500 515.9 60 2862.5 151.2896 1.818182 78.45783792 27.14494802 1972318397 363.8726588 14 minutes

APl Testing

Production environment

Stability and Reliability:

One of the most notable strengths of Heliodor is its stability and reliability under heavy loads. In API stress testing, Heliodor exhibits
minimal failure rates even when subjected to extreme volumes of concurrent requests. This reliability is crucial for applications such as
production platforms, where system downtime or transaction failures can have significant financial implications.

Efficiency in Data Persistence:

In persistence testing, Heliodor shines with its ability to sustain low response times and minimal failures, particularly in transactional
systems and real-time data update APls. This efficiency ensures that data-intensive applications, such as analytics platforms and content
management systems, can handle large datasets without compromising on speed or stability.

Impressive Requests Per Second (RPS):

Heliodor's performance in RPS testing further solidifies its position as a high-performance PHP framework. With consistently high RPS
values and minimal response times, Heliodor proves to be a reliable choice for applications requiring rapid data processing, such as financial
trading platforms and media streaming services.

Versatility and Adaptability:

Overall, Heliodor demonstrates remarkable versatility and adaptability across a wide range of use cases. Whether it's handling high
volumes of concurrent transactions, managing real-time data updates, or ensuring rapid request processing, Heliodor proves to be a
dependable framework for developers seeking performance excellence.

Heliodor's Drawback:

The exceptional performance of Heliodor is achieved through a deliberate choice to strip away non-essential components, such as
templating engines and complex abstractions, focusing solely on the core elements necessary for efficient API service development. While this
streamlined approach ensures blazing-fast response times and minimal resource usage, it also limits the framework's versatility as a standalone
solution for all web development needs.

Instead, Heliodor is best suited as a specialized tool for handling the heavy backend work of API services. Its emphasis on custom
routing, autoloading, a basic model layer manager, and controllers makes it an ideal choice for applications where speed and efficiency are
paramount. However, this stripped-down nature means that developers may need to integrate Heliodor alongside other frameworks to harness
its performance benefits while still utilizing the additional features and functionalities provided by more comprehensive frameworks.

Therefore, the drawback of Heliodor lies in its singular focus on backend performance optimization, which may require developers to
combine it with other frameworks to create a fully-fledged web application. While it excels in providing blazing-fast APl responses and efficient
data handling, it may not offer the full spectrum of tools and functionalities required for complex front-end development or extensive web
application requirements. As such, Heliodor's strength lies in its role as a specialized backend service component, complementing other
frameworks to create a well-rounded, high-performance web application ecosystem.

Final Verdict:

In conclusion, Heliodor emerges as a top contender in the realm of PHP frameworks, offering a potent combination of stability,
efficiency, and performance. Its ability to deliver exceptional results across stress, persistence, and RPS testing scenarios makes it a compelling
choice for developers looking to build high-performance web applications. Heliodor's consistent performance excellence positions it as a
framework of choice for projects where speed, reliability, and scalability are paramount.

