

HELIODOR Framework
PERFORMANCE EVALUATION

API TESTING – Symfony 6.3.4 vs Heliodor 0.1.4

 The purpose of this paper is to analyze and compare the performance of Heliodor and Symfony, shedding light on

their respective efficiencies in handling various API requests and workloads and highlight why it might be a good idea

to switch to a separate external API Handler Architecture.

Performance testing in this context is crucial as it directly impacts user satisfaction, scalability,

competitive positioning in the market but most importantly, resource efficiency. It ensures that your

infrastructure delivers efficient services, responsive web applications, enhancing overall experience

and optimizing development efforts.

In the field of software development, "separation of concerns" refers to the practice of dividing a program into distinct

sections, each addressing a separate concern or aspect of the application's functionality. However, this aspect seems

to be forgotten in the context of API handling. To put our vision into perspective, we ask a simple question: Just like

we store data in a database, a separate source from our application, why would we use the exact same resource that,

for example, renders our front-end, to handle external API requests to our application? This, after all, goes against

the essence of the separation of concerns.

Undoubtedly, the ease of development derived from having all tools within a single framework or system is

undeniable, and we do not intend to dispute that fact. Rather, we propose an argument that suggests perhaps this

very convenience might lead to efficiency leaks within architectures. Our aim is to delineate where it is most prudent

to balance ease of development against efficiency, and vice versa.

API Testing
Production environment

We have chosen to place this section of our tests at the

forefront, as ultimately, it holds the greatest

significance: actual performance when operating on a

live web server. While this approach may not yield the

most precise results in terms of "raw horsepower," it

undoubtedly offers the most accurate insight into real-

world performance expectations.

01 STRESS

02 PERSISTENCE

03 REQUESTS / SECOND

Stress testing
API stress testing involves evaluating an API's performance by subjecting it to

a high volume of concurrent requests or heavy loads to assess its stability and

responsiveness under such conditions. For this test, we aimed at two main

benchmarks: have the lowest failure percentage under extreme volumes,

while also maintaining the highest requests per second percentage possible.

Persistence testing
Persistence testing involves assessing how well an application or system

retains data integrity and consistency over time, ensuring that data is properly

stored, retrieved, and updated without loss or corruption. In an optimal

scenario, this test aims to observe the endpoint sustaining the maximum

requests per second rate with a flawless success record, over a prolonged

period.

RPS testing
Ideally, the goal of RPS (Requests Per Second) testing is to determine the

maximum throughput capacity of the endpoint while maintaining a zero

percent failure rate (or close to zero, just to see how far the framework can be

“overclocked” in extremely demanding scenarios). In terms of benchmarks,

this test represents an amalgamation of the strengths observed in the initial

two tests, offering a balanced perspective.

 * The testing environment consists of a Linux Apache 2 shared hosting webserver. The setup includes a Symfony web app hosted on “our-test.com” and a

Heliodor application on “api.our-test.com”. Both endpoints ("/route/to/api") receive POST requests with the same bodies: “from="Apache+JMETER+-

+SYMFONY+TEST” or “from="Apache+JMETER+-+HELIODOR+TEST”. All tests were made using Apache JMeter 5.6.3 in random sequences. Symfony API process:

Try -> create TransactionEntity -> Persist -> respond 200, 'Transaction has been recorded successfully'; Catch Error -> respond 500, *ErrorMessage. Heliodor API

process: Try -> Insert into 'transaction' -> respond 200, 'Transaction has been recorded successfully'; Catch Error -> respond 500, *ErrorMessage. Disturbance

Potential: Heliodor runs on subdomain, so redirects theoretically slower requests for its Endpoint. Observed Effects: All request averages have been faster for

Heliodor despite the potential disturbance. Interface Application (or main application) runs on Symfony and could potentially slow down the Endpoint in specific

scenarios. Testing Fairness: To ensure fairness, testing sequences were randomized, and server breaks were introduced.

API Testing
Production environment

STRESS TESTING

In stress testing scenarios, Heliodor consistently demonstrates superior performance when compared to Symfony. The average

response times for Heliodor are notably lower, with a maximum recorded time of 142 milliseconds, significantly contrasting with Symfony's
maximum of 860 milliseconds. In fact, Heliodors highest average (142 ms) is lower than Symfony’s lowest average (219 ms). Additionally, the
failure percentage for Heliodor ranges between a mere 0.03% to 48.81%, which is markedly lower than Symfony's 0.18% to 83.37%. As clearly
visible, the higher the TRPS (Theoretical/Forced Requests per Second), the more observable the fail rate difference is. For the first and most
stressful test, which tries to push a TRPS of 240000, Symfony fails over half the requests, while Heliodor achieves an astonishing under 1.5%
failure rate.

Moreover, Heliodor achieves higher Requests Per Second (RPS) values, ranging from 109.85 to 211.23, in comparison to Symfony's

18.45 to 101.67. These results collectively highlight Heliodor's efficiency in managing high-volume and concurrent requests, ensuring both
stability and responsiveness under stress. It is also worth noting, this is the only test in which Symfony manages to push over 20 RPS. This is
because this achieved value of 101.67 RPS comes with an 83.37% failure rate, which translates to 16-17 RPS for successful transactions.

Given these performance metrics, Heliodor emerges as the preferred choice for highly stressful scenarios, where fast throughput at

low failure rate is essential. Its consistently superior performance, with lower response times, minimal failure rates, and higher RPS values,
underscores its capability to handle intense loads effectively. This makes Heliodor the optimal solution when robustness and reliability under
stress are paramount considerations for an API service.

Heliodor's superior performance in stress testing scenarios makes it ideal for high-traffic web applications, real-time data processing,

and APIs serving mobile apps. It is also well-suited for microservices architectures, financial transactions, and media streaming services,
ensuring stability, responsiveness, and efficiency under heavy loads. Its low response times, minimal failure rates, and high Requests Per Second
(RPS) make Heliodor a reliable choice for a variety of critical API use cases.

API Testing
Production environment

PERSISTENCE TESTING

In the realm of persistence testing, Heliodor consistently exhibits superior performance metrics compared to Symfony across a range

of scenarios. The average response times for Heliodor remain notably lower, with a maximum recorded time of 135 milliseconds, which stands
in stark contrast to Symfony's peak of 1137 milliseconds. This significant difference underscores Heliodor's efficiency in persisting data while
maintaining swift response times.

Heliodor also maintains impressively low failure rates throughout the testing scenarios, ranging from a mere 0.01% to 0.44%. This

contrasts with Symfony's observed rates of 0.05% to 0.87%. These results demonstrate Heliodor's reliability and robustness in handling varying
loads and persisting data accurately over extended periods of time with no breaks.

Since this test mainly focuses on loads that are not necessarily overloading the system but take a long time to finish, the benchmark

“Test duration” perfectly embodies why having such an infrastructure would be highly beneficial. The largest test required each framework to
process 60000 requests. Symfony got through this load in no less than 57 minutes, while Heliodor finished the exact same load in just 8 minutes
at 0% fail rate. This trend has been persistent throughout all our testing. For example, test 3 requires a load of exactly 10% of the former,
respectively 6000 requests, which Symfony finishes in 5.75 minutes, and Heliodor finishes in 35 seconds, which gives us the exact expected
result, which is the same, but scaled down to 10%.

In conclusion, Heliodor emerges as the preferred solution for persistence testing scenarios where maintaining low response times,

minimal failure rates, and efficient data handling under varying loads are paramount. Its superior performance metrics position it as an optimal
choice for transactional systems, real-time data updates, data-intensive applications, and user profile management APIs, ensuring reliability
and efficiency in persisting critical data.

API Testing
Production environment

RPS TESTING

Heliodor demonstrates remarkable performance in Requests Per Second (RPS) testing scenarios, consistently outshining Symfony in

terms of response rates and reliability under varying loads.

[High RPS at 99% Safety]: In this test scenario, Heliodor achieves an impressive RPS of 131.94 with a minuscule average response time

of 105 milliseconds and a failure rate of 0%. This indicates Heliodor's capability to handle a substantial number of requests per second with
exceptional efficiency and reliability, making it suitable for high-traffic applications such as e-commerce platforms and real-time data processing
systems.

[High RPS at 95% Safety]: Even at a slightly lower safety threshold of 95%, Heliodor maintains a robust RPS of 153.30 with an average

response time of 109 milliseconds and a negligible failure rate. These results highlight Heliodor's ability to sustain high levels of performance
while ensuring a margin of safety, making it suitable for applications requiring consistent and reliable throughput, such as financial trading
platforms and online gaming APIs.

[High RPS at 90% Safety]: With an RPS of 166.36 and an average response time of 106 milliseconds, Heliodor performs exceptionally

well even at a 90% safety threshold. Despite a modest failure rate of 7.64% (compared to Symfony’s being over the allowed 10%), Heliodor
showcases its capacity to handle intensive loads while maintaining acceptable levels of safety, making it a viable choice for applications
requiring rapid data processing and high availability, such as media streaming platforms and real-time messaging services.

In summary, Heliodor emerges as a standout performer in RPS testing, consistently delivering high RPS values with minimal response

times and negligible failure rates. Its ability to sustain exceptional performance across varying safety thresholds underscores its versatility and
reliability for applications demanding high throughput and responsiveness. Heliodor proves to be an optimal choice for a wide range of use
cases, including high-traffic web applications, real-time data processing systems, and critical API endpoints requiring dependable and efficient
handling of requests.

API Testing
Production environment

CONCLUSIONS

Stability and Reliability:
One of the most notable strengths of Heliodor is its stability and reliability under heavy loads. In API stress testing, Heliodor exhibits

minimal failure rates even when subjected to extreme volumes of concurrent requests. This reliability is crucial for applications such as
production platforms, where system downtime or transaction failures can have significant financial implications.

Efficiency in Data Persistence:
In persistence testing, Heliodor shines with its ability to sustain low response times and minimal failures, particularly in transactional

systems and real-time data update APIs. This efficiency ensures that data-intensive applications, such as analytics platforms and content
management systems, can handle large datasets without compromising on speed or stability.

Impressive Requests Per Second (RPS):
Heliodor's performance in RPS testing further solidifies its position as a high-performance PHP framework. With consistently high RPS

values and minimal response times, Heliodor proves to be a reliable choice for applications requiring rapid data processing, such as financial
trading platforms and media streaming services.

Versatility and Adaptability:
Overall, Heliodor demonstrates remarkable versatility and adaptability across a wide range of use cases. Whether it's handling high

volumes of concurrent transactions, managing real-time data updates, or ensuring rapid request processing, Heliodor proves to be a
dependable framework for developers seeking performance excellence.

Heliodor's Drawback:
The exceptional performance of Heliodor is achieved through a deliberate choice to strip away non-essential components, such as

templating engines and complex abstractions, focusing solely on the core elements necessary for efficient API service development. While this
streamlined approach ensures blazing-fast response times and minimal resource usage, it also limits the framework's versatility as a standalone
solution for all web development needs.

Instead, Heliodor is best suited as a specialized tool for handling the heavy backend work of API services. Its emphasis on custom
routing, autoloading, a basic model layer manager, and controllers makes it an ideal choice for applications where speed and efficiency are
paramount. However, this stripped-down nature means that developers may need to integrate Heliodor alongside other frameworks to harness
its performance benefits while still utilizing the additional features and functionalities provided by more comprehensive frameworks.

Therefore, the drawback of Heliodor lies in its singular focus on backend performance optimization, which may require developers to
combine it with other frameworks to create a fully-fledged web application. While it excels in providing blazing-fast API responses and efficient
data handling, it may not offer the full spectrum of tools and functionalities required for complex front-end development or extensive web
application requirements. As such, Heliodor's strength lies in its role as a specialized backend service component, complementing other
frameworks to create a well-rounded, high-performance web application ecosystem.

Final Verdict:
In conclusion, Heliodor emerges as a top contender in the realm of PHP frameworks, offering a potent combination of stability,

efficiency, and performance. Its ability to deliver exceptional results across stress, persistence, and RPS testing scenarios makes it a compelling
choice for developers looking to build high-performance web applications. Heliodor's consistent performance excellence positions it as a
framework of choice for projects where speed, reliability, and scalability are paramount.

